IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25522-6.html
   My bibliography  Save this article

Processive dynamics of the usher assembly platform during uropathogenic Escherichia coli P pilus biogenesis

Author

Listed:
  • Minge Du

    (Van Andel Institute)

  • Zuanning Yuan

    (Van Andel Institute)

  • Glenn T. Werneburg

    (Stony Brook University, Stony Brook
    Stony Brook University, Stony Brook
    Glickman Urological and Kidney Institute, Cleveland Clinic)

  • Nadine S. Henderson

    (Stony Brook University, Stony Brook
    Stony Brook University, Stony Brook)

  • Hemil Chauhan

    (Stony Brook University, Stony Brook
    Stony Brook University, Stony Brook
    SUNY Downstate College of Medicine, Brooklyn)

  • Amanda Kovach

    (Van Andel Institute)

  • Gongpu Zhao

    (Van Andel Institute)

  • Jessica Johl

    (Stony Brook University, Stony Brook
    Stony Brook University, Stony Brook)

  • Huilin Li

    (Van Andel Institute)

  • David G. Thanassi

    (Stony Brook University, Stony Brook
    Stony Brook University, Stony Brook)

Abstract

Uropathogenic Escherichia coli assemble surface structures termed pili or fimbriae to initiate infection of the urinary tract. P pili facilitate bacterial colonization of the kidney and pyelonephritis. P pili are assembled through the conserved chaperone-usher pathway. Much of the structural and functional understanding of the chaperone-usher pathway has been gained through investigations of type 1 pili, which promote binding to the bladder and cystitis. In contrast, the structural basis for P pilus biogenesis at the usher has remained elusive. This is in part due to the flexible and variable-length P pilus tip fiber, creating structural heterogeneity, and difficulties isolating stable P pilus assembly intermediates. Here, we circumvent these hindrances and determine cryo-electron microscopy structures of the activated PapC usher in the process of secreting two- and three-subunit P pilus assembly intermediates, revealing processive steps in P pilus biogenesis and capturing new conformational dynamics of the usher assembly machine.

Suggested Citation

  • Minge Du & Zuanning Yuan & Glenn T. Werneburg & Nadine S. Henderson & Hemil Chauhan & Amanda Kovach & Gongpu Zhao & Jessica Johl & Huilin Li & David G. Thanassi, 2021. "Processive dynamics of the usher assembly platform during uropathogenic Escherichia coli P pilus biogenesis," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25522-6
    DOI: 10.1038/s41467-021-25522-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25522-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25522-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Giese & Chasper Puorger & Oleksandr Ignatov & Zuzana Bečárová & Marco E. Weber & Martin A. Schärer & Guido Capitani & Rudi Glockshuber, 2023. "Stochastic chain termination in bacterial pilus assembly," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Matthew C. Gaines & Michail N. Isupov & Shamphavi Sivabalasarma & Risat Ul Haque & Mathew McLaren & Clara L. Mollat & Patrick Tripp & Alexander Neuhaus & Vicki A. M. Gold & Sonja-Verena Albers & Bertr, 2022. "Electron cryo-microscopy reveals the structure of the archaeal thread filament," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Dawid S. Zyla & Thomas Wiegand & Paul Bachmann & Rafal Zdanowicz & Christoph Giese & Beat H. Meier & Gabriel Waksman & Manuela K. Hospenthal & Rudi Glockshuber, 2024. "The assembly platform FimD is required to obtain the most stable quaternary structure of type 1 pili," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25522-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.