IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25505-7.html
   My bibliography  Save this article

Climate warming promotes pesticide resistance through expanding overwintering range of a global pest

Author

Listed:
  • Chun-Sen Ma

    (Institute of Plant Protection, Chinese Academy of Agricultural Sciences
    College of Plant Protection, Shanxi Agricultural University)

  • Wei Zhang

    (Institute of Plant Protection, Chinese Academy of Agricultural Sciences)

  • Yu Peng

    (Institute of Plant Protection, Chinese Academy of Agricultural Sciences)

  • Fei Zhao

    (Institute of Plant Protection, Chinese Academy of Agricultural Sciences
    College of Plant Protection, Shanxi Agricultural University)

  • Xiang-Qian Chang

    (Institute of Plant Protection, Chinese Academy of Agricultural Sciences
    Institute of Plant Protection & Soil Science, Hubei Academy of Agricultural Sciences)

  • Kun Xing

    (Institute of Plant Protection, Chinese Academy of Agricultural Sciences
    College of Plant Protection, Shanxi Agricultural University)

  • Liang Zhu

    (Institute of Plant Protection, Chinese Academy of Agricultural Sciences)

  • Gang Ma

    (Institute of Plant Protection, Chinese Academy of Agricultural Sciences)

  • He-Ping Yang

    (National Meteorological Information Centre)

  • Volker H. W. Rudolf

    (BioSciences, Rice University)

Abstract

Climate change has the potential to change the distribution of pests globally and their resistance to pesticides, thereby threatening global food security in the 21st century. However, predicting where these changes occur and how they will influence current pest control efforts is a challenge. Using experimentally parameterised and field-tested models, we show that climate change over the past 50 years increased the overwintering range of a global agricultural insect pest, the diamondback moth (Plutella xylostella), by ~2.4 million km2 worldwide. Our analysis of global data sets revealed that pesticide resistance levels are linked to the species’ overwintering range: mean pesticide resistance was 158 times higher in overwintering sites compared to sites with only seasonal occurrence. By facilitating local persistence all year round, climate change can promote and expand pesticide resistance of this destructive species globally. These ecological and evolutionary changes would severely impede effectiveness of current pest control efforts and potentially cause large economic losses.

Suggested Citation

  • Chun-Sen Ma & Wei Zhang & Yu Peng & Fei Zhao & Xiang-Qian Chang & Kun Xing & Liang Zhu & Gang Ma & He-Ping Yang & Volker H. W. Rudolf, 2021. "Climate warming promotes pesticide resistance through expanding overwintering range of a global pest," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25505-7
    DOI: 10.1038/s41467-021-25505-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25505-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25505-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahman, Md Mamunur & Nguyen, Ruby & Lu, Liang, 2022. "Multi-level impacts of climate change and supply disruption events on a potato supply chain: An agent-based modeling approach," Agricultural Systems, Elsevier, vol. 201(C).
    2. Friederike M. C. Benning & Simon Jenni & Coby Y. Garcia & Tran H. Nguyen & Xuewu Zhang & Luke H. Chao, 2024. "Helical reconstruction of VP39 reveals principles for baculovirus nucleocapsid assembly," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Haowei Ni & Han Hu & Constantin M. Zohner & Weigen Huang & Ji Chen & Yishen Sun & Jixian Ding & Jizhong Zhou & Xiaoyuan Yan & Jiabao Zhang & Yuting Liang & Thomas W. Crowther, 2024. "Effects of winter soil warming on crop biomass carbon loss from organic matter degradation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25505-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.