Author
Listed:
- Seong J. An
(Yale University School of Medicine)
- Felix Rivera-Molina
(Yale University School of Medicine)
- Alexander Anneken
(Yale University School of Medicine)
- Zhiqun Xi
(Yale University School of Medicine)
- Brian McNellis
(Yale University School of Medicine)
- Vladimir I. Polejaev
(Yale University School of Medicine)
- Derek Toomre
(Yale University School of Medicine)
Abstract
Vesicle tethers are thought to underpin the efficiency of intracellular fusion by bridging vesicles to their target membranes. However, the interplay between tethering and fusion has remained enigmatic. Here, through optogenetic control of either a natural tether—the exocyst complex—or an artificial tether, we report that tethering regulates the mode of fusion. We find that vesicles mainly undergo kiss-and-run instead of full fusion in the absence of functional exocyst. Full fusion is rescued by optogenetically restoring exocyst function, in a manner likely dependent on the stoichiometry of tether engagement with the plasma membrane. In contrast, a passive artificial tether produces mostly kissing events, suggesting that kiss-and-run is the default mode of vesicle fusion. Optogenetic control of tethering further shows that fusion mode has physiological relevance since only full fusion could trigger lamellipodial expansion. These findings demonstrate that active coupling between tethering and fusion is critical for robust membrane merger.
Suggested Citation
Seong J. An & Felix Rivera-Molina & Alexander Anneken & Zhiqun Xi & Brian McNellis & Vladimir I. Polejaev & Derek Toomre, 2021.
"An active tethering mechanism controls the fate of vesicles,"
Nature Communications, Nature, vol. 12(1), pages 1-14, December.
Handle:
RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25465-y
DOI: 10.1038/s41467-021-25465-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25465-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.