IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25371-3.html
   My bibliography  Save this article

Epistatic Net allows the sparse spectral regularization of deep neural networks for inferring fitness functions

Author

Listed:
  • Amirali Aghazadeh

    (Department of Electrical Engineering and Computer Sciences)

  • Hunter Nisonoff

    (Center for Computational Biology)

  • Orhan Ocal

    (Department of Electrical Engineering and Computer Sciences)

  • David H. Brookes

    (University of California)

  • Yijie Huang

    (Department of Electrical Engineering and Computer Sciences)

  • O. Ozan Koyluoglu

    (Department of Electrical Engineering and Computer Sciences)

  • Jennifer Listgarten

    (Department of Electrical Engineering and Computer Sciences
    Center for Computational Biology)

  • Kannan Ramchandran

    (Department of Electrical Engineering and Computer Sciences)

Abstract

Despite recent advances in high-throughput combinatorial mutagenesis assays, the number of labeled sequences available to predict molecular functions has remained small for the vastness of the sequence space combined with the ruggedness of many fitness functions. While deep neural networks (DNNs) can capture high-order epistatic interactions among the mutational sites, they tend to overfit to the small number of labeled sequences available for training. Here, we developed Epistatic Net (EN), a method for spectral regularization of DNNs that exploits evidence that epistatic interactions in many fitness functions are sparse. We built a scalable extension of EN, usable for larger sequences, which enables spectral regularization using fast sparse recovery algorithms informed by coding theory. Results on several biological landscapes show that EN consistently improves the prediction accuracy of DNNs and enables them to outperform competing models which assume other priors. EN estimates the higher-order epistatic interactions of DNNs trained on massive sequence spaces-a computational problem that otherwise takes years to solve.

Suggested Citation

  • Amirali Aghazadeh & Hunter Nisonoff & Orhan Ocal & David H. Brookes & Yijie Huang & O. Ozan Koyluoglu & Jennifer Listgarten & Kannan Ramchandran, 2021. "Epistatic Net allows the sparse spectral regularization of deep neural networks for inferring fitness functions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25371-3
    DOI: 10.1038/s41467-021-25371-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25371-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25371-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rachapun Rotrattanadumrong & Yohei Yokobayashi, 2022. "Experimental exploration of a ribozyme neutral network using evolutionary algorithm and deep learning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Nicolae Sapoval & Amirali Aghazadeh & Michael G. Nute & Dinler A. Antunes & Advait Balaji & Richard Baraniuk & C. J. Barberan & Ruth Dannenfelser & Chen Dun & Mohammadamin Edrisi & R. A. Leo Elworth &, 2022. "Current progress and open challenges for applying deep learning across the biosciences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25371-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.