IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25275-2.html
   My bibliography  Save this article

Revealing the chirality origin and homochirality crystallization of Ag14 nanocluster at the molecular level

Author

Listed:
  • Xiao-Qian Liang

    (Shandong University)

  • Ying-Zhou Li

    (Qilu University of Technology (Shandong Academy of Science))

  • Zhi Wang

    (Shandong University)

  • Shan-Shan Zhang

    (Shandong University)

  • Yi-Cheng Liu

    (Shandong University)

  • Zhao-Zhen Cao

    (Shandong University)

  • Lei Feng

    (Shandong University)

  • Zhi-Yong Gao

    (Henan Normal University)

  • Qing-Wang Xue

    (Liaocheng University)

  • Chen-Ho Tung

    (Shandong University)

  • Di Sun

    (Shandong University)

Abstract

Although chirality is an ever-present characteristic in biology and some artificial molecules, controlling the chirality and demystifying the chirality origin of complex assemblies remain challenging. Herein, we report two homochiral Ag14 nanoclusters with inherent chirality originated from identical rotation of six square faces on a Ag8 cube driven by intra-cluster π···π stacking interaction between pntp− (Hpntp = p-nitrothiophenol) ligands. The spontaneous resolution of the racemic (SD/rac-Ag14a) to homochiral nanoclusters (SD/L-Ag14 and SD/R-Ag14) can be realized by re-crystallizing SD/rac-Ag14a in acetonitrile, which promotes the homochiral crystallization in solid state by forming C–H···O/N hydrogen bonds with nitro oxygen atoms in pntp− or aromatic hydrogen atoms in dpph (dpph = 1,6-bis(diphenylphosphino)hexane) on Ag14 nanocluster. This work not only provides strategic guidance for the syntheses of chiral silver nanoclusters in an all-achiral environment, but also deciphers the origin of chirality at molecular level by identifying the special effects of intra- and inter-cluster supramolecular interactions.

Suggested Citation

  • Xiao-Qian Liang & Ying-Zhou Li & Zhi Wang & Shan-Shan Zhang & Yi-Cheng Liu & Zhao-Zhen Cao & Lei Feng & Zhi-Yong Gao & Qing-Wang Xue & Chen-Ho Tung & Di Sun, 2021. "Revealing the chirality origin and homochirality crystallization of Ag14 nanocluster at the molecular level," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25275-2
    DOI: 10.1038/s41467-021-25275-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25275-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25275-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhihe Liu & Hua Tan & Bo Li & Zehua Hu & De-en Jiang & Qiaofeng Yao & Lei Wang & Jianping Xie, 2023. "Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Qing Zhang & Weiqiang Wang & Shuang Zhou & Rui Zhang & Irmgard Bischofberger, 2024. "Flow-induced periodic chiral structures in an achiral nematic liquid crystal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Xi-Ming Luo & Chun-Hua Gong & Fangfang Pan & Yubing Si & Jia-Wang Yuan & Muhammad Asad & Xi-Yan Dong & Shuang-Quan Zang & Thomas C. W. Mak, 2022. "Small symmetry-breaking triggering large chiroptical responses of Ag70 nanoclusters," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25275-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.