IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25116-2.html
   My bibliography  Save this article

Quantification of critical particle distance for mitigating catalyst sintering

Author

Listed:
  • Peng Yin

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Sulei Hu

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Kun Qian

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Zeyue Wei

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Le-Le Zhang

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Yue Lin

    (University of Science and Technology of China)

  • Weixin Huang

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Haifeng Xiong

    (Xiamen University)

  • Wei-Xue Li

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Hai-Wei Liang

    (University of Science and Technology of China
    University of Science and Technology of China)

Abstract

Supported metal nanoparticles are of universal importance in many industrial catalytic processes. Unfortunately, deactivation of supported metal catalysts via thermally induced sintering is a major concern especially for high-temperature reactions. Here, we demonstrate that the particle distance as an inherent parameter plays a pivotal role in catalyst sintering. We employ carbon black supported platinum for the model study, in which the particle distance is well controlled by changing platinum loading and carbon black supports with varied surface areas. Accordingly, we quantify a critical particle distance of platinum nanoparticles on carbon supports, over which the sintering can be mitigated greatly up to 900 °C. Based on in-situ aberration-corrected high-angle annular dark-field scanning transmission electron and theoretical studies, we find that enlarging particle distance to over the critical distance suppress the particle coalescence, and the critical particle distance itself depends sensitively on the strength of metal-support interactions.

Suggested Citation

  • Peng Yin & Sulei Hu & Kun Qian & Zeyue Wei & Le-Le Zhang & Yue Lin & Weixin Huang & Haifeng Xiong & Wei-Xue Li & Hai-Wei Liang, 2021. "Quantification of critical particle distance for mitigating catalyst sintering," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25116-2
    DOI: 10.1038/s41467-021-25116-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25116-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25116-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yamei Fan & Rongtan Li & Beibei Wang & Xiaohui Feng & Xiangze Du & Chengxiang Liu & Fei Wang & Conghui Liu & Cui Dong & Yanxiao Ning & Rentao Mu & Qiang Fu, 2024. "Water-assisted oxidative redispersion of Cu particles through formation of Cu hydroxide at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Xiaoxiao Zeng & Yudan Jing & Saisai Gao & Wencong Zhang & Yang Zhang & Hanwen Liu & Chao Liang & Chenchen Ji & Yi Rao & Jianbo Wu & Bin Wang & Yonggang Yao & Shengchun Yang, 2023. "Hydrogenated borophene enabled synthesis of multielement intermetallic catalysts," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Tian-Wei Song & Cong Xu & Zhu-Tao Sheng & Hui-Kun Yan & Lei Tong & Jun Liu & Wei-Jie Zeng & Lu-Jie Zuo & Peng Yin & Ming Zuo & Sheng-Qi Chu & Ping Chen & Hai-Wei Liang, 2022. "Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25116-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.