IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25105-5.html
   My bibliography  Save this article

m6Am-seq reveals the dynamic m6Am methylation in the human transcriptome

Author

Listed:
  • Hanxiao Sun

    (Peking University)

  • Kai Li

    (Peking University
    Peking University
    Peking University)

  • Xiaoting Zhang

    (Peking University)

  • Jun’e Liu

    (Peking University)

  • Meiling Zhang

    (Peking University)

  • Haowei Meng

    (Peking University)

  • Chengqi Yi

    (Peking University
    Peking University
    Peking University)

Abstract

N6,2′-O-dimethyladenosine (m6Am), a terminal modification adjacent to the mRNA cap, is a newly discovered reversible RNA modification. Yet, a specific and sensitive tool to directly map transcriptome-wide m6Am is lacking. Here, we report m6Am-seq, based on selective in vitro demethylation and RNA immunoprecipitation. m6Am-seq directly distinguishes m6Am and 5′-UTR N6-methyladenosine (m6A) and enables the identification of m6Am at single-base resolution and 5′-UTR m6A in the human transcriptome. Using m6Am-seq, we also find that m6Am and 5′-UTR m6A respond dynamically to stimuli, and identify key functional methylation sites that may facilitate cellular stress response. Collectively, m6Am-seq reveals the high-confidence m6Am and 5′-UTR m6A methylome and provides a robust tool for functional studies of the two epitranscriptomic marks.

Suggested Citation

  • Hanxiao Sun & Kai Li & Xiaoting Zhang & Jun’e Liu & Meiling Zhang & Haowei Meng & Chengqi Yi, 2021. "m6Am-seq reveals the dynamic m6Am methylation in the human transcriptome," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25105-5
    DOI: 10.1038/s41467-021-25105-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25105-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25105-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. WeiChao Hao & MeiJuan Dian & Ying Zhou & QiuLing Zhong & WenQian Pang & ZiJian Li & YaYan Zhao & JiaCheng Ma & XiaoLin Lin & RenRu Luo & YongLong Li & JunShuang Jia & HongFen Shen & ShiHao Huang & Gua, 2022. "Autophagy induction promoted by m6A reader YTHDF3 through translation upregulation of FOXO3 mRNA," Nature Communications, Nature, vol. 13(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25105-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.