IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25095-4.html
   My bibliography  Save this article

Spin-state reconfiguration induced by alternating magnetic field for efficient oxygen evolution reaction

Author

Listed:
  • Gang Zhou

    (Hohai University)

  • Peifang Wang

    (Hohai University)

  • Hao Li

    (Hohai University)

  • Bin Hu

    (Hohai University)

  • Yan Sun

    (University of Utah)

  • Rong Huang

    (Hohai University)

  • Lizhe Liu

    (Nanjing University)

Abstract

Oxygen evolution reaction (OER) plays a determining role in electrochemical energy conversion devices, but challenges remain due to the lack of effective low-cost electrocatalysts and insufficient understanding about sluggish reaction kinetics. Distinguish from complex nano-structuring, this work focuses on the spin-related charge transfer and orbital interaction between catalysts and intermediates to accelerate catalytic reaction kinetics. Herein, we propose a simple magnetic-stimulation approach to rearrange spin electron occupation in noble-metal-free metal-organic frameworks (MOFs) with a feature of thermal-differentiated superlattice, in which the localized magnetic heating in periodic spatial distribution makes the spin flip occur at particular active sites, demonstrating a spin-dependent reaction pathway. As a result, the spin-rearranged Co0.8Mn0.2 MOF displays mass activities of 3514.7 A gmetal−1 with an overpotential of ~0.27 V, which is 21.1 times that of pristine MOF. Our findings provide a new paradigm for designing spin electrocatalysis and steering reaction kinetics.

Suggested Citation

  • Gang Zhou & Peifang Wang & Hao Li & Bin Hu & Yan Sun & Rong Huang & Lizhe Liu, 2021. "Spin-state reconfiguration induced by alternating magnetic field for efficient oxygen evolution reaction," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25095-4
    DOI: 10.1038/s41467-021-25095-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25095-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25095-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Pengcheng & Wang, Jingang & Xia, Haiting & He, Wei, 2024. "A novel industrial magnetically enhanced hydrogen production electrolyzer and effect of magnetic field configuration," Applied Energy, Elsevier, vol. 367(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25095-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.