IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25068-7.html
   My bibliography  Save this article

Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas

Author

Listed:
  • Wa Gao

    (Nanjing University)

  • Shi Li

    (Southeast University)

  • Huichao He

    (Southwest University of Science and Technology)

  • Xiaoning Li

    (University of Wollongong, Squires Way)

  • Zhenxiang Cheng

    (University of Wollongong, Squires Way)

  • Yong Yang

    (Nanjing University of Science and Technology)

  • Jinlan Wang

    (Southeast University)

  • Qing Shen

    (University of Electrocommunication, Grad Sch Informatics and Engineering)

  • Xiaoyong Wang

    (Nanjing University)

  • Yujie Xiong

    (University of Science and Technology of China)

  • Yong Zhou

    (Nanjing University
    The Chinese University of Hongkong (Shenzhen))

  • Zhigang Zou

    (Nanjing University
    The Chinese University of Hongkong (Shenzhen))

Abstract

Artificial photosynthesis, light-driving CO2 conversion into hydrocarbon fuels, is a promising strategy to synchronously overcome global warming and energy-supply issues. The quaternary AgInP2S6 atomic layer with the thickness of ~ 0.70 nm were successfully synthesized through facile ultrasonic exfoliation of the corresponding bulk crystal. The sulfur defect engineering on this atomic layer through a H2O2 etching treatment can excitingly change the CO2 photoreduction reaction pathway to steer dominant generation of ethene with the yield-based selectivity reaching ~73% and the electron-based selectivity as high as ~89%. Both DFT calculation and in-situ FTIR spectra demonstrate that as the introduction of S vacancies in AgInP2S6 causes the charge accumulation on the Ag atoms near the S vacancies, the exposed Ag sites can thus effectively capture the forming *CO molecules. It makes the catalyst surface enrich with key reaction intermediates to lower the C-C binding coupling barrier, which facilitates the production of ethene.

Suggested Citation

  • Wa Gao & Shi Li & Huichao He & Xiaoning Li & Zhenxiang Cheng & Yong Yang & Jinlan Wang & Qing Shen & Xiaoyong Wang & Yujie Xiong & Yong Zhou & Zhigang Zou, 2021. "Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25068-7
    DOI: 10.1038/s41467-021-25068-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25068-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25068-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengyao Wang & Bo Jiang & Joel Henzie & Feiyan Xu & Chengyuan Liu & Xianguang Meng & Sirong Zou & Hui Song & Yang Pan & Hexing Li & Jiaguo Yu & Hao Chen & Jinhua Ye, 2023. "Designing reliable and accurate isotope-tracer experiments for CO2 photoreduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Yan Shen & Chunjin Ren & Lirong Zheng & Xiaoyong Xu & Ran Long & Wenqing Zhang & Yong Yang & Yongcai Zhang & Yingfang Yao & Haoqiang Chi & Jinlan Wang & Qing Shen & Yujie Xiong & Zhigang Zou & Yong Zh, 2023. "Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Zhongkai Xie & Shengjie Xu & Longhua Li & Shanhe Gong & Xiaojie Wu & Dongbo Xu & Baodong Mao & Ting Zhou & Min Chen & Xiao Wang & Weidong Shi & Shuyan Song, 2024. "Well-defined diatomic catalysis for photosynthesis of C2H4 from CO2," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25068-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.