Author
Listed:
- Yuchen Liu
(University of Sheffield)
- Xin Yi
(University of Sheffield
Heriot-Watt University)
- Nicholas J. Bailey
(University of Sheffield)
- Zhize Zhou
(University of Sheffield
Zhejiang University)
- Thomas B. O. Rockett
(University of Sheffield)
- Leh W. Lim
(University of Sheffield)
- Chee H. Tan
(University of Sheffield)
- Robert D. Richards
(University of Sheffield)
- John P. R. David
(University of Sheffield)
Abstract
Avalanche Photodiodes (APDs) are key semiconductor components that amplify weak optical signals via the impact ionization process, but this process’ stochastic nature introduces ‘excess’ noise, limiting the useful signal to noise ratio (or sensitivity) that is practically achievable. The APD material’s electron and hole ionization coefficients (α and β respectively) are critical parameters in this regard, with very disparate values of α and β necessary to minimize this excess noise. Here, the analysis of thirteen complementary p-i-n/n-i-p diodes shows that alloying GaAs with ≤ 5.1 % Bi dramatically reduces β while leaving α virtually unchanged—enabling a 2 to 100-fold enhancement of the GaAs α/β ratio while extending the wavelength beyond 1.1 µm. Such a dramatic change in only β is unseen in any other dilute alloy and is attributed to the Bi-induced increase of the spin-orbit splitting energy (∆so). Valence band engineering in this way offers an attractive route to enable low noise semiconductor APDs to be developed.
Suggested Citation
Yuchen Liu & Xin Yi & Nicholas J. Bailey & Zhize Zhou & Thomas B. O. Rockett & Leh W. Lim & Chee H. Tan & Robert D. Richards & John P. R. David, 2021.
"Valence band engineering of GaAsBi for low noise avalanche photodiodes,"
Nature Communications, Nature, vol. 12(1), pages 1-8, December.
Handle:
RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24966-0
DOI: 10.1038/s41467-021-24966-0
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24966-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.