IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24908-w.html
   My bibliography  Save this article

Site-specific Umpolung amidation of carboxylic acids via triplet synergistic catalysis

Author

Listed:
  • Yunyun Ning

    (Nanjing University)

  • Shuaishuai Wang

    (Nanjing University)

  • Muzi Li

    (Nanjing University)

  • Jie Han

    (Nanjing University)

  • Chengjian Zhu

    (Nanjing University
    Zhengzhou University)

  • Jin Xie

    (Nanjing University
    Hunan University)

Abstract

Development of catalytic amide bond-forming methods is important because they could potentially address the existing limitations of classical methods using superstoichiometric activating reagents. In this paper, we disclose an Umpolung amidation reaction of carboxylic acids with nitroarenes and nitroalkanes enabled by the triplet synergistic catalysis of FeI2, P(V)/P(III) and photoredox catalysis, which avoids the production of byproducts from stoichiometric coupling reagents. A wide range of carboxylic acids, including aliphatic, aromatic and alkenyl acids participate smoothly in such reactions, generating structurally diverse amides in good yields (86 examples, up to 97% yield). This Umpolung amidation strategy opens a method to address challenging regioselectivity issues between nucleophilic functional groups, and complements the functional group compatibility of the classical amidation protocols. The synthetic robustness of the reaction is demonstrated by late-stage modification of complex molecules and gram-scale applications.

Suggested Citation

  • Yunyun Ning & Shuaishuai Wang & Muzi Li & Jie Han & Chengjian Zhu & Jin Xie, 2021. "Site-specific Umpolung amidation of carboxylic acids via triplet synergistic catalysis," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24908-w
    DOI: 10.1038/s41467-021-24908-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24908-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24908-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Gao & Rui Ma & Fairoosa Poovan & Lan Zhang & Hanan Atia & Narayana V. Kalevaru & Wenjing Sun & Sebastian Wohlrab & Denis A. Chusov & Ning Wang & Rajenahally V. Jagadeesh & Matthias Beller, 2023. "Streamlining the synthesis of amides using Nickel-based nanocatalysts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24908-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.