IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24893-0.html
   My bibliography  Save this article

Surface enrichment and diffusion enabling gradient-doping and coating of Ni-rich cathode toward Li-ion batteries

Author

Listed:
  • Haifeng Yu

    (East China University of Science and Technology)

  • Yueqiang Cao

    (East China University of Science and Technology)

  • Long Chen

    (East China University of Science and Technology)

  • Yanjie Hu

    (East China University of Science and Technology)

  • Xuezhi Duan

    (East China University of Science and Technology)

  • Sheng Dai

    (East China University of Science and Technology)

  • Chunzhong Li

    (East China University of Science and Technology)

  • Hao Jiang

    (East China University of Science and Technology)

Abstract

Critical barriers to layered Ni-rich cathode commercialisation include their rapid capacity fading and thermal runaway from crystal disintegration and their interfacial instability. Structure combines surface modification is the ultimate choice to overcome these. Here, a synchronous gradient Al-doped and LiAlO2-coated LiNi0.9Co0.1O2 cathode is designed and prepared by using an oxalate-assisted deposition and subsequent thermally driven diffusion method. Theoretical calculations, in situ X-ray diffraction results and finite-element simulation verify that Al3+ moves to the tetrahedral interstices prior to Ni2+ that eliminates the Li/Ni disorder and internal structure stress. The Li+-conductive LiAlO2 skin prevents electrolyte penetration of the boundaries and reduces side reactions. These help the Ni-rich cathode maintain a 97.4% cycle performance after 100 cycles, and a rapid charging ability of 127.7 mAh g−1 at 20 C. A 3.5-Ah pouch cell with the cathode and graphite anode showed more than a 500-long cycle life with only a 5.6% capacity loss.

Suggested Citation

  • Haifeng Yu & Yueqiang Cao & Long Chen & Yanjie Hu & Xuezhi Duan & Sheng Dai & Chunzhong Li & Hao Jiang, 2021. "Surface enrichment and diffusion enabling gradient-doping and coating of Ni-rich cathode toward Li-ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24893-0
    DOI: 10.1038/s41467-021-24893-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24893-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24893-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongsheng Dai & Zhujie Li & Renjie Chen & Feng Wu & Li Li, 2023. "Defective oxygen inert phase stabilized high-voltage nickel-rich cathode for high-energy lithium-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Xinhong Chen & Yumeng Cheng & Bo Zhang & Jia Zhou & Sisi He, 2024. "Gradient-concentration RuCo electrocatalyst for efficient and stable electroreduction of nitrate into ammonia," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24893-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.