IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24850-x.html
   My bibliography  Save this article

Single pixel imaging at megahertz switching rates via cyclic Hadamard masks

Author

Listed:
  • Evgeny Hahamovich

    (Technion – Israel Institute of Technology)

  • Sagi Monin

    (Technion – Israel Institute of Technology)

  • Yoav Hazan

    (Technion – Israel Institute of Technology)

  • Amir Rosenthal

    (Technion – Israel Institute of Technology)

Abstract

Optical imaging is commonly performed with either a camera and wide-field illumination or with a single detector and a scanning collimated beam; unfortunately, these options do not exist at all wavelengths. Single-pixel imaging offers an alternative that can be performed with a single detector and wide-field illumination, potentially enabling imaging applications in which the detection and illumination technologies are immature. However, single-pixel imaging currently suffers from low imaging rates owing to its reliance on configurable spatial light modulators, generally limited to 22 kHz rates. We develop an approach for rapid single-pixel imaging which relies on cyclic patterns coded onto a spinning mask and demonstrate it for in vivo imaging of C. elegans worms. Spatial modulation rates of up to 2.4 MHz, imaging rates of up to 72 fps, and image-reconstruction times of down to 1.5 ms are reported, enabling real-time visualization of dynamic objects.

Suggested Citation

  • Evgeny Hahamovich & Sagi Monin & Yoav Hazan & Amir Rosenthal, 2021. "Single pixel imaging at megahertz switching rates via cyclic Hadamard masks," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24850-x
    DOI: 10.1038/s41467-021-24850-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24850-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24850-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yibo Xu & Liyang Lu & Vishwanath Saragadam & Kevin F. Kelly, 2024. "A compressive hyperspectral video imaging system using a single-pixel detector," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Patrick Kilcullen & Tsuneyuki Ozaki & Jinyang Liang, 2022. "Compressed ultrahigh-speed single-pixel imaging by swept aggregate patterns," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Yinqi Wang & Kun Huang & Jianan Fang & Ming Yan & E Wu & Heping Zeng, 2023. "Mid-infrared single-pixel imaging at the single-photon level," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24850-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.