IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24739-9.html
   My bibliography  Save this article

KRAP tethers IP3 receptors to actin and licenses them to evoke cytosolic Ca2+ signals

Author

Listed:
  • Nagendra Babu Thillaiappan

    (Tennis Court Road
    Qatar University)

  • Holly A. Smith

    (Tennis Court Road)

  • Peace Atakpa-Adaji

    (Tennis Court Road)

  • Colin W. Taylor

    (Tennis Court Road)

Abstract

Regulation of IP3 receptors (IP3Rs) by IP3 and Ca2+ allows regenerative Ca2+ signals, the smallest being Ca2+ puffs, which arise from coordinated openings of a few clustered IP3Rs. Cells express thousands of mostly mobile IP3Rs, yet Ca2+ puffs occur at a few immobile IP3R clusters. By imaging cells with endogenous IP3Rs tagged with EGFP, we show that KRas-induced actin-interacting protein (KRAP) tethers IP3Rs to actin beneath the plasma membrane. Loss of KRAP abolishes Ca2+ puffs and the global increases in cytosolic Ca2+ concentration evoked by more intense stimulation. Over-expressing KRAP immobilizes additional IP3R clusters and results in more Ca2+ puffs and larger global Ca2+ signals. Endogenous KRAP determines which IP3Rs will respond: it tethers IP3R clusters to actin alongside sites where store-operated Ca2+ entry occurs, licenses IP3Rs to evoke Ca2+ puffs and global cytosolic Ca2+ signals, implicates the actin cytoskeleton in IP3R regulation and may allow local activation of Ca2+ entry.

Suggested Citation

  • Nagendra Babu Thillaiappan & Holly A. Smith & Peace Atakpa-Adaji & Colin W. Taylor, 2021. "KRAP tethers IP3 receptors to actin and licenses them to evoke cytosolic Ca2+ signals," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24739-9
    DOI: 10.1038/s41467-021-24739-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24739-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24739-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Máté Katona & Ádám Bartók & Zuzana Nichtova & György Csordás & Elena Berezhnaya & David Weaver & Arijita Ghosh & Péter Várnai & David I. Yule & György Hajnóczky, 2022. "Capture at the ER-mitochondrial contacts licenses IP3 receptors to stimulate local Ca2+ transfer and oxidative metabolism," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Iqbal Dulloo & Peace Atakpa-Adaji & Yi-Chun Yeh & Clémence Levet & Sonia Muliyil & Fangfang Lu & Colin W. Taylor & Matthew Freeman, 2022. "iRhom pseudoproteases regulate ER stress-induced cell death through IP3 receptors and BCL-2," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24739-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.