IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24712-6.html
   My bibliography  Save this article

Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury

Author

Listed:
  • Wulf Tonnus

    (University Hospital Carl Gustav Carus at the Technische Universität Dresden
    Technische Universität Dresden)

  • Claudia Meyer

    (University Hospital Carl Gustav Carus at the Technische Universität Dresden
    Technische Universität Dresden)

  • Christian Steinebach

    (University of Bonn)

  • Alexia Belavgeni

    (University Hospital Carl Gustav Carus at the Technische Universität Dresden
    Technische Universität Dresden)

  • Anne Mässenhausen

    (University Hospital Carl Gustav Carus at the Technische Universität Dresden
    Technische Universität Dresden)

  • Nadia Zamora Gonzalez

    (University Hospital Carl Gustav Carus at the Technische Universität Dresden
    Technische Universität Dresden)

  • Francesca Maremonti

    (University Hospital Carl Gustav Carus at the Technische Universität Dresden
    Technische Universität Dresden)

  • Florian Gembardt

    (University Hospital Carl Gustav Carus at the Technische Universität Dresden)

  • Nina Himmerkus

    (Christian-Albrecht-University Kiel)

  • Markus Latk

    (University Hospital Carl Gustav Carus at the Technische Universität Dresden
    Technische Universität Dresden)

  • Sophie Locke

    (University Hospital Carl Gustav Carus at the Technische Universität Dresden
    Technische Universität Dresden)

  • Julian Marschner

    (University Hospital LMU Munich)

  • Wenjun Li

    (Washington University)

  • Spencer Short

    (University of Ottawa)

  • Sebastian Doll

    (Helmholtz Zentrum München)

  • Irina Ingold

    (Helmholtz Zentrum München)

  • Bettina Proneth

    (Helmholtz Zentrum München)

  • Christoph Daniel

    (Friedrich-Alexander University (FAU) Erlangen-Nürnberg)

  • Nazanin Kabgani

    (Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen)

  • Rafael Kramann

    (Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen
    Erasmus Medical Center)

  • Stephen Motika

    (University of Illinois)

  • Paul J. Hergenrother

    (University of Illinois)

  • Stefan R. Bornstein

    (University Hospital Carl Gustav Carus at the Technische Universität Dresden
    King’s College London
    Technische Universität Dresden
    Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine)

  • Christian Hugo

    (University Hospital Carl Gustav Carus at the Technische Universität Dresden)

  • Jan Ulrich Becker

    (University Hospital of Cologne)

  • Kerstin Amann

    (Friedrich-Alexander University (FAU) Erlangen-Nürnberg)

  • Hans-Joachim Anders

    (University Hospital LMU Munich)

  • Daniel Kreisel

    (Washington University
    Washington University)

  • Derek Pratt

    (University of Ottawa)

  • Michael Gütschow

    (University of Bonn)

  • Marcus Conrad

    (Helmholtz Zentrum München
    National Research Medical University, Laboratory of Experimental Oncology)

  • Andreas Linkermann

    (University Hospital Carl Gustav Carus at the Technische Universität Dresden
    Technische Universität Dresden)

Abstract

Acute kidney injury (AKI) is morphologically characterized by a synchronized plasma membrane rupture of cells in a specific section of a nephron, referred to as acute tubular necrosis (ATN). Whereas the involvement of necroptosis is well characterized, genetic evidence supporting the contribution of ferroptosis is lacking. Here, we demonstrate that the loss of ferroptosis suppressor protein 1 (Fsp1) or the targeted manipulation of the active center of the selenoprotein glutathione peroxidase 4 (Gpx4cys/-) sensitize kidneys to tubular ferroptosis, resulting in a unique morphological pattern of tubular necrosis. Given the unmet medical need to clinically inhibit AKI, we generated a combined small molecule inhibitor (Nec-1f) that simultaneously targets receptor interacting protein kinase 1 (RIPK1) and ferroptosis in cell lines, in freshly isolated primary kidney tubules and in mouse models of cardiac transplantation and of AKI and improved survival in models of ischemia-reperfusion injury. Based on genetic and pharmacological evidence, we conclude that GPX4 dysfunction hypersensitizes mice to ATN during AKI. Additionally, we introduce Nec-1f, a solid inhibitor of RIPK1 and weak inhibitor of ferroptosis.

Suggested Citation

  • Wulf Tonnus & Claudia Meyer & Christian Steinebach & Alexia Belavgeni & Anne Mässenhausen & Nadia Zamora Gonzalez & Francesca Maremonti & Florian Gembardt & Nina Himmerkus & Markus Latk & Sophie Locke, 2021. "Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24712-6
    DOI: 10.1038/s41467-021-24712-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24712-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24712-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li-Kai Chu & Xu Cao & Lin Wan & Qiang Diao & Yu Zhu & Yu Kan & Li-Li Ye & Yi-Ming Mao & Xing-Qiang Dong & Qian-Wei Xiong & Ming-Cui Fu & Ting Zhang & Hui-Ting Zhou & Shi-Zhong Cai & Zhou-Rui Ma & Ssu-, 2023. "Autophagy of OTUD5 destabilizes GPX4 to confer ferroptosis-dependent kidney injury," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Da-Yun Jin & Xuejie Chen & Yizhou Liu & Craig M. Williams & Lars C. Pedersen & Darrel W. Stafford & Jian-Ke Tie, 2023. "A genome-wide CRISPR-Cas9 knockout screen identifies FSP1 as the warfarin-resistant vitamin K reductase," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Dadi Jiang & Youming Guo & Tianyu Wang & Liang Wang & Yuelong Yan & Ling Xia & Rakesh Bam & Zhifen Yang & Hyemin Lee & Takao Iwawaki & Boyi Gan & Albert C. Koong, 2024. "IRE1α determines ferroptosis sensitivity through regulation of glutathione synthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24712-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.