Author
Listed:
- Dan Fu
(Texas A&M University
Texas A&M University)
- Ping Chang
(Texas A&M University
Texas A&M University
Texas A&M University)
- Christina M. Patricola
(Iowa State University
Lawrence Berkeley National Laboratory)
- R. Saravanan
(Texas A&M University
Texas A&M University)
- Xue Liu
(Texas A&M University
Texas A&M University)
- Hylke E. Beck
(Princeton University)
Abstract
The eastern North Pacific (ENP) has the highest density of tropical cyclones (TCs) on earth, and yet the controls on TCs, from individual events to seasonal totals, remain poorly understood. One effect that has not been fully considered is the unique geography of the Central American mountains. Although observational studies suggest these mountains can readily fuel individual TCs through dynamical processes, here we show that these mountains indeed play the opposite role on the seasonal timescale, hindering seasonal ENP TC activity by up to 35%. We found that these mountains significantly interrupt the abundant moisture transport from the Caribbean Sea to the ENP, limiting deep convection over the open ocean area where TCs preferentially occur. This study advances our fundamental understanding of ENP TC genesis mechanisms across the weather-to-climate timescales, and also highlights the importance of topography representation in improving the ENP regional climate simulations, as well as TC seasonal predictions and future projections.
Suggested Citation
Dan Fu & Ping Chang & Christina M. Patricola & R. Saravanan & Xue Liu & Hylke E. Beck, 2021.
"Central American mountains inhibit eastern North Pacific seasonal tropical cyclone activity,"
Nature Communications, Nature, vol. 12(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24657-w
DOI: 10.1038/s41467-021-24657-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24657-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.