IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24455-4.html
   My bibliography  Save this article

Asymmetric reconstruction of mammalian reovirus reveals interactions among RNA, transcriptional factor µ2 and capsid proteins

Author

Listed:
  • Muchen Pan

    (Chinese Academy of Sciences
    University of California, Los Angeles (UCLA)
    California NanoSystems Institute, UCLA
    University of Chinese Academy of Sciences)

  • Ana L. Alvarez-Cabrera

    (University of California, Los Angeles (UCLA)
    California NanoSystems Institute, UCLA)

  • Joon S. Kang

    (University of California, Los Angeles (UCLA)
    California NanoSystems Institute, UCLA
    Molecular Biology Institute, UCLA)

  • Lihua Wang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Chunhai Fan

    (Shanghai Jiao Tong University)

  • Z. Hong Zhou

    (University of California, Los Angeles (UCLA)
    California NanoSystems Institute, UCLA
    Molecular Biology Institute, UCLA)

Abstract

Mammalian reovirus (MRV) is the prototypical member of genus Orthoreovirus of family Reoviridae. However, lacking high-resolution structures of its RNA polymerase cofactor μ2 and infectious particle, limits understanding of molecular interactions among proteins and RNA, and their contributions to virion assembly and RNA transcription. Here, we report the 3.3 Å-resolution asymmetric reconstruction of transcribing MRV and in situ atomic models of its capsid proteins, the asymmetrically attached RNA-dependent RNA polymerase (RdRp) λ3, and RdRp-bound nucleoside triphosphatase μ2 with a unique RNA-binding domain. We reveal molecular interactions among virion proteins and genomic and messenger RNA. Polymerase complexes in three Spinoreovirinae subfamily members are organized with different pseudo-D3d symmetries to engage their highly diversified genomes. The above interactions and those between symmetry-mismatched receptor-binding σ1 trimers and RNA-capping λ2 pentamers balance competing needs of capsid assembly, external protein removal, and allosteric triggering of endogenous RNA transcription, before, during and after infection, respectively.

Suggested Citation

  • Muchen Pan & Ana L. Alvarez-Cabrera & Joon S. Kang & Lihua Wang & Chunhai Fan & Z. Hong Zhou, 2021. "Asymmetric reconstruction of mammalian reovirus reveals interactions among RNA, transcriptional factor µ2 and capsid proteins," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24455-4
    DOI: 10.1038/s41467-021-24455-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24455-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24455-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiqiang Li & Han Xia & Guibo Rao & Yan Fu & Tingting Chong & Kexing Tian & Zhiming Yuan & Sheng Cao, 2024. "Cryo-EM structures of Banna virus in multiple states reveal stepwise detachment of viral spikes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Simon Jenni & Joshua A. Horwitz & Louis-Marie Bloyet & Sean P. J. Whelan & Stephen C. Harrison, 2022. "Visualizing molecular interactions that determine assembly of a bullet-shaped vesicular stomatitis virus particle," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Xiaoyu Liu & Xian Xia & Michael W. Martynowycz & Tamir Gonen & Z. Hong Zhou, 2024. "Molecular sociology of virus-induced cellular condensates supporting reovirus assembly and replication," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24455-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.