Author
Listed:
- Guoxiang Zhu
(Tsinghua University
China Academy of Engineering Physics)
- Wei Zhu
(Tsinghua University
Xi’an Polytechnic University)
- Yang Lou
(Jiangnan University)
- Jun Ma
(Tsinghua University
Sichuan normal university)
- Wenqing Yao
(Tsinghua University)
- Ruilong Zong
(Tsinghua University)
- Yongfa Zhu
(Tsinghua University)
Abstract
Major challenges encountered when developing manganese-based materials for ozone decomposition are related to the low stability and water inactivation. To solve these problems, a hierarchical structure consisted of graphene encapsulating α-MnO2 nanofiber was developed. The optimized catalyst exhibited a stable ozone conversion efficiency of 80% and excellent stability over 100 h under a relative humidity (RH) of 20%. Even though the RH increased to 50%, the ozone conversion also reached 70%, well beyond the performance of α-MnO2 nanofiber. Here, surface graphite carbon was activated by capturing the electron from inner unsaturated Mn atoms. The excellent stability originated from the moderate local work function, which compromised the reaction barriers in the adsorption of ozone molecule and the desorption of the intermediate oxygen species. The hydrophobic graphene shells hindered the chemisorption of water vapour, consequently enhanced its water resistance. This work offered insights for catalyst design and would promote the practical application of manganese-based catalysts in ozone decomposition.
Suggested Citation
Guoxiang Zhu & Wei Zhu & Yang Lou & Jun Ma & Wenqing Yao & Ruilong Zong & Yongfa Zhu, 2021.
"Encapsulate α-MnO2 nanofiber within graphene layer to tune surface electronic structure for efficient ozone decomposition,"
Nature Communications, Nature, vol. 12(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24424-x
DOI: 10.1038/s41467-021-24424-x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24424-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.