IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24381-5.html
   My bibliography  Save this article

Molecular insertion regulates the donor-acceptor interactions in cocrystals for the design of piezochromic luminescent materials

Author

Listed:
  • Chunguang Zhai

    (Jilin University)

  • Xiu Yin

    (Jilin University)

  • Shifeng Niu

    (Jilin University)

  • Mingguang Yao

    (Jilin University)

  • Shuhe Hu

    (Jilin University)

  • Jiajun Dong

    (Jilin University)

  • Yuchen Shang

    (Jilin University)

  • Zhigang Wang

    (Institute of Atomic and Molecular Physics, Jilin University)

  • Quanjun Li

    (Jilin University)

  • Bertil Sundqvist

    (Jilin University
    UmeƄ University)

  • Bingbing Liu

    (Jilin University)

Abstract

Developing a universal strategy to design piezochromic luminescent materials with desirable properties remains challenging. Here, we report that insertion of a non-emissive molecule into a donor (perylene) and acceptor (1,2,4,5-tetracyanobezene) binary cocrystal can realize fine manipulation of intermolecular interactions between perylene and 1,2,4,5-tetracyanobezene (TCNB) for desirable piezochromic luminescent properties. A continuous pressure-induced emission enhancement up to 3 GPa and a blue shift from 655 to 619 nm have been observed in perylene-TCNB cocrystals upon THF insertion, in contrast to the red-shifted and quenched emission observed when compressing perylene-TCNB cocrystals and other cocrystals reported earlier. By combining experiment with theory, it is further revealed that the inserted non-emissive THF forms blue-shifting hydrogen bonds with neighboring TCNB molecules and promote a conformation change of perylene molecules upon compression, causing the blue-shifted and enhanced emission. This strategy remains valid when inserting other molecules as non-emissive component into perylene-TCNB cocrystals for abnormal piezochromic luminescent behaviors.

Suggested Citation

  • Chunguang Zhai & Xiu Yin & Shifeng Niu & Mingguang Yao & Shuhe Hu & Jiajun Dong & Yuchen Shang & Zhigang Wang & Quanjun Li & Bertil Sundqvist & Bingbing Liu, 2021. "Molecular insertion regulates the donor-acceptor interactions in cocrystals for the design of piezochromic luminescent materials," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24381-5
    DOI: 10.1038/s41467-021-24381-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24381-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24381-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenqing Xu & Guanheng Huang & Zhan Yang & Ziqi Deng & Chen Zhou & Jian-An Li & Ming-De Li & Tao Hu & Ben Zhong Tang & David Lee Phillips, 2024. "Nucleic-acid-base photofunctional cocrystal for information security and antimicrobial applications," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Debasish Barman & Mari Annadhasan & Anil Parsram Bidkar & Pachaiyappan Rajamalli & Debika Barman & Siddhartha Sankar Ghosh & Rajadurai Chandrasekar & Parameswar Krishnan Iyer, 2023. "Highly efficient color-tunable organic co-crystals unveiling polymorphism, isomerism, delayed fluorescence for optical waveguides and cell-imaging," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24381-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.