IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24301-7.html
   My bibliography  Save this article

Hexosamine biosynthetic pathway and O-GlcNAc-processing enzymes regulate daily rhythms in protein O-GlcNAcylation

Author

Listed:
  • Xianhui Liu

    (College of Agricultural and Environmental Sciences, University of California)

  • Ivana Blaženović

    (West Coast Metabolomics Center, University of California)

  • Adam J. Contreras

    (College of Agricultural and Environmental Sciences, University of California)

  • Thu M. Pham

    (College of Agricultural and Environmental Sciences, University of California)

  • Christine A. Tabuloc

    (College of Agricultural and Environmental Sciences, University of California)

  • Ying H. Li

    (College of Agricultural and Environmental Sciences, University of California)

  • Jian Ji

    (School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University)

  • Oliver Fiehn

    (West Coast Metabolomics Center, University of California)

  • Joanna C. Chiu

    (College of Agricultural and Environmental Sciences, University of California)

Abstract

The integration of circadian and metabolic signals is essential for maintaining robust circadian rhythms and ensuring efficient metabolism and energy use. Using Drosophila as an animal model, we show that cellular protein O-GlcNAcylation exhibits robust 24-hour rhythm and represents a key post-translational mechanism that regulates circadian physiology. We observe strong correlation between protein O-GlcNAcylation rhythms and clock-controlled feeding-fasting cycles, suggesting that O-GlcNAcylation rhythms are primarily driven by nutrient input. Interestingly, daily O-GlcNAcylation rhythms are severely dampened when we subject flies to time-restricted feeding at unnatural feeding time. This suggests the presence of clock-regulated buffering mechanisms that prevent excessive O-GlcNAcylation at non-optimal times of the day-night cycle. We show that this buffering mechanism is mediated by the expression and activity of GFAT, OGT, and OGA, which are regulated through integration of circadian and metabolic signals. Finally, we generate a mathematical model to describe the key factors that regulate daily O-GlcNAcylation rhythm.

Suggested Citation

  • Xianhui Liu & Ivana Blaženović & Adam J. Contreras & Thu M. Pham & Christine A. Tabuloc & Ying H. Li & Jian Ji & Oliver Fiehn & Joanna C. Chiu, 2021. "Hexosamine biosynthetic pathway and O-GlcNAc-processing enzymes regulate daily rhythms in protein O-GlcNAcylation," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24301-7
    DOI: 10.1038/s41467-021-24301-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24301-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24301-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haibo Zhang & Keke Xue & Wen Li & Xinyi Yang & Yusen Gou & Xiao Su & Feng Qian & Lei Sun, 2024. "Cullin5 drives experimental asthma exacerbations by modulating alveolar macrophage antiviral immunity," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Ke Shui & Chenwei Wang & Xuedi Zhang & Shanshan Ma & Qinyu Li & Wanshan Ning & Weizhi Zhang & Miaomiao Chen & Di Peng & Hui Hu & Zheng Fang & Anyuan Guo & Guanjun Gao & Mingliang Ye & Luoying Zhang & , 2023. "Small-sample learning reveals propionylation in determining global protein homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24301-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.