IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24256-9.html
   My bibliography  Save this article

Revealing thermally-activated nucleation pathways of diffusionless solid-to-solid transition

Author

Listed:
  • Minhuan Li

    (State Key Laboratory of Surface Physics and Department of Physics, Fudan University)

  • Zhengyuan Yue

    (State Key Laboratory of Surface Physics and Department of Physics, Fudan University)

  • Yanshuang Chen

    (State Key Laboratory of Surface Physics and Department of Physics, Fudan University)

  • Hua Tong

    (School of Physics and Astronomy, Shanghai Jiao Tong University
    Department of Physics, University of Science and Technology of China
    Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo)

  • Hajime Tanaka

    (Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo
    Research Center for Advanced Science and Technology, University of Tokyo)

  • Peng Tan

    (State Key Laboratory of Surface Physics and Department of Physics, Fudan University)

Abstract

Solid-to-solid transitions usually occur via athermal nucleation pathways on pre-existing defects due to immense strain energy. However, the extent to which athermal nucleation persists under low strain energy comparable to the interface energy, and whether thermally-activated nucleation is still possible are mostly unknown. To address these questions, the microscopic observation of the transformation dynamics is a prerequisite. Using a charged colloidal system that allows the triggering of an fcc-to-bcc transition while enabling in-situ single-particle-level observation, we experimentally find both athermal and thermally-activated pathways controlled by the softness of the parent crystal. In particular, we reveal three new transition pathways: ingrain homogeneous nucleation driven by spontaneous dislocation generation, heterogeneous nucleation assisted by premelting grain boundaries, and wall-assisted growth. Our findings reveal the physical principles behind the system-dependent pathway selection and shed light on the control of solid-to-solid transitions through the parent phase’s softness and defect landscape.

Suggested Citation

  • Minhuan Li & Zhengyuan Yue & Yanshuang Chen & Hua Tong & Hajime Tanaka & Peng Tan, 2021. "Revealing thermally-activated nucleation pathways of diffusionless solid-to-solid transition," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24256-9
    DOI: 10.1038/s41467-021-24256-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24256-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24256-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Doan & John Kulikowski & X. Wendy Gu, 2024. "Direct observation of phase transitions in truncated tetrahedral microparticles under quasi-2D confinement," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Yi Peng & Wei Li & Tim Still & Arjun G. Yodh & Yilong Han, 2023. "In situ observation of coalescence of nuclei in colloidal crystal-crystal transitions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Menghao Yang & Yunsheng Liu & Yifei Mo, 2023. "Lithium crystallization at solid interfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24256-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.