IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24255-w.html
   My bibliography  Save this article

Nanoengineering of cathode layers for solid oxide fuel cells to achieve superior power densities

Author

Listed:
  • Katherine Develos-Bagarinao

    (National Institute of Advanced Industrial Science and Technology (AIST))

  • Tomohiro Ishiyama

    (National Institute of Advanced Industrial Science and Technology (AIST))

  • Haruo Kishimoto

    (National Institute of Advanced Industrial Science and Technology (AIST))

  • Hiroyuki Shimada

    (National Institute of Advanced Industrial Science and Technology (AIST))

  • Katsuhiko Yamaji

    (National Institute of Advanced Industrial Science and Technology (AIST))

Abstract

Solid oxide fuel cells (SOFCs) are power-generating devices with high efficiencies and considered as promising alternatives to mitigate energy and environmental issues associated with fossil fuel technologies. Nanoengineering of electrodes utilized for SOFCs has emerged as a versatile tool for significantly enhancing the electrochemical performance but needs to overcome issues for integration into practical cells suitable for widespread application. Here, we report an innovative concept for high-performance thin-film cathodes comprising nanoporous La0.6Sr0.4CoO3−δ cathodes in conjunction with highly ordered, self-assembled nanocomposite La0.6Sr0.4Co0.2Fe0.8O3−δ (lanthanum strontium cobalt ferrite) and Ce0.9Gd0.1O2−δ (gadolinia-doped ceria) cathode layers prepared using pulsed laser deposition. Integration of the nanoengineered cathode layers into conventional anode-supported cells enabled the achievement of high current densities at 0.7 V reaching ~2.2 and ~4.7 A/cm2 at 650 °C and 700 °C, respectively. This result demonstrates that tuning material properties through an effective nanoengineering approach could significantly boost the electrochemical performance of cathodes for development of next-generation SOFCs with high power output.

Suggested Citation

  • Katherine Develos-Bagarinao & Tomohiro Ishiyama & Haruo Kishimoto & Hiroyuki Shimada & Katsuhiko Yamaji, 2021. "Nanoengineering of cathode layers for solid oxide fuel cells to achieve superior power densities," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24255-w
    DOI: 10.1038/s41467-021-24255-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24255-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24255-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chen & He, Qijiao & Li, Zheng & Yu, Jie & Bello, Idris Temitope & Zheng, Keqing & Han, Minfang & Ni, Meng, 2024. "A novel in-tube reformer for solid oxide fuel cell for performance improvement and efficient thermal management: A numerical study based on artificial neural network and genetic algorithm," Applied Energy, Elsevier, vol. 357(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24255-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.