IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24202-9.html
   My bibliography  Save this article

A universal Urbach rule for disordered organic semiconductors

Author

Listed:
  • Christina Kaiser

    (Swansea University)

  • Oskar J. Sandberg

    (Swansea University)

  • Nasim Zarrabi

    (Swansea University)

  • Wei Li

    (Swansea University)

  • Paul Meredith

    (Swansea University)

  • Ardalan Armin

    (Swansea University)

Abstract

In crystalline semiconductors, absorption onset sharpness is characterized by temperature-dependent Urbach energies. These energies quantify the static, structural disorder causing localized exponential-tail states, and dynamic disorder from electron-phonon scattering. Applicability of this exponential-tail model to disordered solids has been long debated. Nonetheless, exponential fittings are routinely applied to sub-gap absorption analysis of organic semiconductors. Herein, we elucidate the sub-gap spectral line-shapes of organic semiconductors and their blends by temperature-dependent quantum efficiency measurements. We find that sub-gap absorption due to singlet excitons is universally dominated by thermal broadening at low photon energies and the associated Urbach energy equals the thermal energy, regardless of static disorder. This is consistent with absorptions obtained from a convolution of Gaussian density of excitonic states weighted by Boltzmann-like thermally activated optical transitions. A simple model is presented that explains absorption line-shapes of disordered systems, and we also provide a strategy to determine the excitonic disorder energy. Our findings elaborate the meaning of the Urbach energy in molecular solids and relate the photo-physics to static disorder, crucial for optimizing organic solar cells for which we present a revisited radiative open-circuit voltage limit.

Suggested Citation

  • Christina Kaiser & Oskar J. Sandberg & Nasim Zarrabi & Wei Li & Paul Meredith & Ardalan Armin, 2021. "A universal Urbach rule for disordered organic semiconductors," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24202-9
    DOI: 10.1038/s41467-021-24202-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24202-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24202-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wouter H. J. Peeters & Victor T. Lange & Abderrezak Belabbes & Max C. Hemert & Marvin Marco Jansen & Riccardo Farina & Marvin A. J. Tilburg & Marcel A. Verheijen & Silvana Botti & Friedhelm Bechstedt , 2024. "Direct bandgap quantum wells in hexagonal Silicon Germanium," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24202-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.