IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24179-5.html
   My bibliography  Save this article

PEG-stabilized coaxial stacking of two-dimensional covalent organic frameworks for enhanced photocatalytic hydrogen evolution

Author

Listed:
  • Ting Zhou

    (Fudan University)

  • Lei Wang

    (University of Science and Technology of China)

  • Xingye Huang

    (Fudan University)

  • Junjuda Unruangsri

    (Chulalongkorn University)

  • Hualei Zhang

    (Fudan University)

  • Rong Wang

    (Fudan University)

  • Qingliang Song

    (Fudan University)

  • Qingyuan Yang

    (Beijing University of Chemical Technology)

  • Weihua Li

    (Fudan University)

  • Changchun Wang

    (Fudan University)

  • Kaito Takahashi

    (Institute of Atomic and Molecular Sciences Academia Sinica)

  • Hangxun Xu

    (University of Science and Technology of China)

  • Jia Guo

    (Fudan University)

Abstract

Two-dimensional covalent organic frameworks (2D COFs) featuring periodic frameworks, extended π-conjugation and layered stacking structures, have emerged as a promising class of materials for photocatalytic hydrogen evolution. Nevertheless, the layer-by-layer assembly in 2D COFs is not stable during the photocatalytic cycling in water, causing disordered stacking and declined activity. Here, we report an innovative strategy to stabilize the ordered arrangement of layered structures in 2D COFs for hydrogen evolution. Polyethylene glycol is filled up in the mesopore channels of a β-ketoenamine-linked COF containing benzothiadiazole moiety. This unique feature suppresses the dislocation of neighbouring layers and retains the columnar π-orbital arrays to facilitate free charge transport. The hydrogen evolution rate is therefore remarkably promoted under visible irradiation compared with that of the pristine COF. This study provides a general post-functionalization strategy for 2D COFs to enhance photocatalytic performances.

Suggested Citation

  • Ting Zhou & Lei Wang & Xingye Huang & Junjuda Unruangsri & Hualei Zhang & Rong Wang & Qingliang Song & Qingyuan Yang & Weihua Li & Changchun Wang & Kaito Takahashi & Hangxun Xu & Jia Guo, 2021. "PEG-stabilized coaxial stacking of two-dimensional covalent organic frameworks for enhanced photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24179-5
    DOI: 10.1038/s41467-021-24179-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24179-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24179-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zhang & Qiu-Hong Zhu & Yue-Ru Zhou & Shuang-Long Wang & Jie Fu & Jia-Ying Liu & Guo-Hao Zhang & Lijian Ma & Guohua Tao & Guo-Hong Tao & Ling He, 2023. "Hydrogen-bonding and π-π interaction promoted solution-processable covalent organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Minghao Liu & Shuai Yang & Xiubei Yang & Cheng-Xing Cui & Guojuan Liu & Xuewen Li & Jun He & George Zheng Chen & Qing Xu & Gaofeng Zeng, 2023. "Post-synthetic modification of covalent organic frameworks for CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Weijun Weng & Jia Guo, 2022. "The effect of enantioselective chiral covalent organic frameworks and cysteine sacrificial donors on photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24179-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.