IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24018-7.html
   My bibliography  Save this article

Spatial regulation of thermomorphogenesis by HY5 and PIF4 in Arabidopsis

Author

Listed:
  • Sanghwa Lee

    (The University of Texas at Austin)

  • Wenli Wang

    (The University of Texas at Austin)

  • Enamul Huq

    (The University of Texas at Austin)

Abstract

Plants respond to high ambient temperature by implementing a suite of morphological changes collectively termed thermomorphogenesis. Here we show that the above and below ground tissue-response to high ambient temperature are mediated by distinct transcription factors. While the central hub transcription factor, PHYTOCHROME INTERCTING FACTOR 4 (PIF4) regulates the above ground tissue response, the below ground root elongation is primarily regulated by ELONGATED HYPOCOTYL 5 (HY5). Plants respond to high temperature by largely expressing distinct sets of genes in a tissue-specific manner. HY5 promotes root thermomorphogenesis via directly controlling the expression of many genes including the auxin and BR pathway genes. Strikingly, the above and below ground thermomorphogenesis is impaired in spaQ. Because SPA1 directly phosphorylates PIF4 and HY5, SPAs might control the stability of PIF4 and HY5 to regulate thermomorphogenesis in both tissues. These data collectively suggest that plants employ distinct combination of SPA-PIF4-HY5 module to regulate tissue-specific thermomorphogenesis.

Suggested Citation

  • Sanghwa Lee & Wenli Wang & Enamul Huq, 2021. "Spatial regulation of thermomorphogenesis by HY5 and PIF4 in Arabidopsis," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24018-7
    DOI: 10.1038/s41467-021-24018-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24018-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24018-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui-Hsien Chang & Lin-Chen Huang & Karen S. Browning & Enamul Huq & Mei-Chun Cheng, 2024. "The phosphorylation of carboxyl-terminal eIF2α by SPA kinases contributes to enhanced translation efficiency during photomorphogenesis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Jingqiu Lan & Ning Wang & Yutao Wang & Yidan Jiang & Hao Yu & Xiaofeng Cao & Genji Qin, 2023. "Arabidopsis TCP4 transcription factor inhibits high temperature-induced homeotic conversion of ovules," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Sanghwa Lee & Julia Showalter & Ling Zhang & Gaëlle Cassin-Ross & Hatem Rouached & Wolfgang Busch, 2024. "Nutrient levels control root growth responses to high ambient temperature in plants," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24018-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.