Author
Listed:
- Ali Sarrami-Foroushani
(University of Leeds
University of Leeds)
- Toni Lassila
(University of Leeds)
- Michael MacRaild
(University of Leeds)
- Joshua Asquith
(University of Leeds)
- Kit C. B. Roes
(Radboud University Medical Centre)
- James V. Byrne
(Oxford University)
- Alejandro F. Frangi
(University of Leeds
University of Leeds
KU Leuven
KU Leuven)
Abstract
The cost of clinical trials is ever-increasing. In-silico trials rely on virtual populations and interventions simulated using patient-specific models and may offer a solution to lower these costs. We present the flow diverter performance assessment (FD-PASS) in-silico trial, which models the treatment of intracranial aneurysms in 164 virtual patients with 82 distinct anatomies with a flow-diverting stent, using computational fluid dynamics to quantify post-treatment flow reduction. The predicted FD-PASS flow-diversion success rates replicate the values previously reported in three clinical trials. The in-silico approach allows broader investigation of factors associated with insufficient flow reduction than feasible in a conventional trial. Our findings demonstrate that in-silico trials of endovascular medical devices can: (i) replicate findings of conventional clinical trials, and (ii) perform virtual experiments and sub-group analyses that are difficult or impossible in conventional trials to discover new insights on treatment failure, e.g. in the presence of side-branches or hypertension.
Suggested Citation
Ali Sarrami-Foroushani & Toni Lassila & Michael MacRaild & Joshua Asquith & Kit C. B. Roes & James V. Byrne & Alejandro F. Frangi, 2021.
"In-silico trial of intracranial flow diverters replicates and expands insights from conventional clinical trials,"
Nature Communications, Nature, vol. 12(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23998-w
DOI: 10.1038/s41467-021-23998-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23998-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.