Author
Listed:
- Ehud Haimov
(Tel-Aviv University)
- Aidan Chapman
(Molecular Sciences Research Hub, White City Campus)
- Fernando Bresme
(Molecular Sciences Research Hub, White City Campus
Imperial College London, South Kensington Campus)
- Andrew S. Holmes
(Imperial College London, South Kensington Campus)
- Tom Reddyhoff
(Imperial College London, South Kensington Campus)
- Michael Urbakh
(Tel-Aviv University)
- Alexei A. Kornyshev
(Molecular Sciences Research Hub, White City Campus
Imperial College London, South Kensington Campus)
Abstract
Innovative concepts and materials are enabling energy harvesters for slower motion, particularly for personal wearables or portable small-scale applications, hence contributing to a future sustainable economy. Here we propose a principle for a capacitive rotor device and analyze its operation. This device is based on a rotor containing many capacitors in parallel. The rotation of the rotor causes periodic capacitance changes and, when connected to a reservoir-of-charge capacitor, induces alternating current. The properties of this device depend on the lubricating liquid situated between the capacitor’s electrodes, be it a highly polar liquid, organic electrolyte, or ionic liquid – we consider all these scenarios. An advantage of the capacitive rotor is its scalability. Such a lightweight device, weighing tens of grams, can be implemented in a shoe sole, generating a significant power output of the order of Watts. Scaled up, such systems can be used in portable wind or water turbines.
Suggested Citation
Ehud Haimov & Aidan Chapman & Fernando Bresme & Andrew S. Holmes & Tom Reddyhoff & Michael Urbakh & Alexei A. Kornyshev, 2021.
"Theoretical demonstration of a capacitive rotor for generation of alternating current from mechanical motion,"
Nature Communications, Nature, vol. 12(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23891-6
DOI: 10.1038/s41467-021-23891-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23891-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.