IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23814-5.html
   My bibliography  Save this article

Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform

Author

Listed:
  • Inki Kim

    (Pohang University of Science and Technology (POSTECH))

  • Jaehyuck Jang

    (Pohang University of Science and Technology (POSTECH))

  • Gyeongtae Kim

    (Pohang University of Science and Technology (POSTECH))

  • Jihae Lee

    (Pohang University of Science and Technology (POSTECH))

  • Trevon Badloe

    (Pohang University of Science and Technology (POSTECH))

  • Jungho Mun

    (Pohang University of Science and Technology (POSTECH))

  • Junsuk Rho

    (Pohang University of Science and Technology (POSTECH)
    Pohang University of Science and Technology (POSTECH)
    National Institute of Nanomaterials Technology (NINT))

Abstract

Vectorial holography has gained a lot of attention due to the promise of versatile polarization control of structured light for enhanced optical security and multi-channel optical communication. Here, we propose a bifunctional metasurface which combines both structural color printing and vectorial holography with eight polarization channels towards advanced encryption applications. The structural colour prints are observed under white light while the polarization encoded holograms are reconstructed under laser illumination. To encode multiple holographic images for different polarization states, a pixelated metasurface is adopted. As a proof-of-concept, we devise an electrically tunable optical security platform incorporated with liquid crystals. The optical security platform is doubly encrypted: an image under white light is decrypted to provide the first key and the corresponding information is used to fully unlock the encrypted information via projected vectorial holographic images. Such an electrically tunable optical security platform may enable smart labels for security and anticounterfeiting applications.

Suggested Citation

  • Inki Kim & Jaehyuck Jang & Gyeongtae Kim & Jihae Lee & Trevon Badloe & Jungho Mun & Junsuk Rho, 2021. "Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23814-5
    DOI: 10.1038/s41467-021-23814-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23814-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23814-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiyao Ma & Tian Tian & Yuxuan Liao & Xue Feng & Yongzhuo Li & Kaiyu Cui & Fang Liu & Hao Sun & Wei Zhang & Yidong Huang, 2024. "Electrically switchable 2N-channel wave-front control for certain functionalities with N cascaded polarization-dependent metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Pei-Nan Ni & Pan Fu & Pei-Pei Chen & Chen Xu & Yi-Yang Xie & Patrice Genevet, 2022. "Spin-decoupling of vertical cavity surface-emitting lasers with complete phase modulation using on-chip integrated Jones matrix metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Byoungsu Ko & Trevon Badloe & Younghwan Yang & Jeonghoon Park & Jaekyung Kim & Heonyeong Jeong & Chunghwan Jung & Junsuk Rho, 2022. "Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Jinhui Huang & Yue Jiang & Qiuyu Chen & Hui Xie & Shaobing Zhou, 2023. "Bioinspired thermadapt shape-memory polymer with light-induced reversible fluorescence for rewritable 2D/3D-encoding information carriers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Xuyue Guo & Peng Li & Jinzhan Zhong & Dandan Wen & Bingyan Wei & Sheng Liu & Shuxia Qi & Jianlin Zhao, 2022. "Stokes meta-hologram toward optical cryptography," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Jie Wang & Jin Chen & Feilong Yu & Rongsheng Chen & Jiuxu Wang & Zengyue Zhao & Xuenan Li & Huaizhong Xing & Guanhai Li & Xiaoshuang Chen & Wei Lu, 2024. "Unlocking ultra-high holographic information capacity through nonorthogonal polarization multiplexing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23814-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.