IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23684-x.html
   My bibliography  Save this article

Cryo-EM structure of TFIIH/Rad4–Rad23–Rad33 in damaged DNA opening in nucleotide excision repair

Author

Listed:
  • Trevor van Eeuwen

    (University of Pennsylvania
    University of Pennsylvania
    University of Pennsylvania)

  • Yoonjung Shim

    (Baylor University)

  • Hee Jong Kim

    (University of Pennsylvania
    University of Pennsylvania
    University of Pennsylvania
    University of Pennsylvania)

  • Tingting Zhao

    (University of Pittsburgh)

  • Shrabani Basu

    (University of Pittsburgh)

  • Benjamin A. Garcia

    (University of Pennsylvania
    University of Pennsylvania)

  • Craig D. Kaplan

    (University of Pittsburgh)

  • Jung-Hyun Min

    (Baylor University)

  • Kenji Murakami

    (University of Pennsylvania
    University of Pennsylvania)

Abstract

The versatile nucleotide excision repair (NER) pathway initiates as the XPC–RAD23B–CETN2 complex first recognizes DNA lesions from the genomic DNA and recruits the general transcription factor complex, TFIIH, for subsequent lesion verification. Here, we present a cryo-EM structure of an NER initiation complex containing Rad4–Rad23-Rad33 (yeast homologue of XPC–RAD23B–CETN2) and 7-subunit coreTFIIH assembled on a carcinogen-DNA adduct lesion at 3.9–9.2 Å resolution. A ~30-bp DNA duplex could be mapped as it straddles between Rad4 and the Ssl2 (XPB) subunit of TFIIH on the 3' and 5' side of the lesion, respectively. The simultaneous binding with Rad4 and TFIIH was permitted by an unwinding of DNA at the lesion. Translocation coupled with torque generation by Ssl2 and Rad4 would extend the DNA unwinding at the lesion and deliver the damaged strand to Rad3 (XPD) in an open form suitable for subsequent lesion scanning and verification.

Suggested Citation

  • Trevor van Eeuwen & Yoonjung Shim & Hee Jong Kim & Tingting Zhao & Shrabani Basu & Benjamin A. Garcia & Craig D. Kaplan & Jung-Hyun Min & Kenji Murakami, 2021. "Cryo-EM structure of TFIIH/Rad4–Rad23–Rad33 in damaged DNA opening in nucleotide excision repair," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23684-x
    DOI: 10.1038/s41467-021-23684-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23684-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23684-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jina Yu & Chunli Yan & Tanmoy Paul & Lucas Brewer & Susan E. Tsutakawa & Chi-Lin Tsai & Samir M. Hamdan & John A. Tainer & Ivaylo Ivanov, 2024. "Molecular architecture and functional dynamics of the pre-incision complex in nucleotide excision repair," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Corina Maritz & Reihaneh Khaleghi & Michelle N. Yancoskie & Sarah Diethelm & Sonja Brülisauer & Natalia Santos Ferreira & Yang Jiang & Shana J. Sturla & Hanspeter Naegeli, 2023. "ASH1L-MRG15 methyltransferase deposits H3K4me3 and FACT for damage verification in nucleotide excision repair," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Jina Yu & Chunli Yan & Thomas Dodd & Chi-Lin Tsai & John A. Tainer & Susan E. Tsutakawa & Ivaylo Ivanov, 2023. "Dynamic conformational switching underlies TFIIH function in transcription and DNA repair and impacts genetic diseases," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23684-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.