IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23679-8.html
   My bibliography  Save this article

Enhanced responsivity and detectivity of fast WSe2 phototransistor using electrostatically tunable in-plane lateral p-n homojunction

Author

Listed:
  • Sayantan Ghosh

    (IIT Bombay)

  • Abin Varghese

    (IIT Bombay
    Monash University
    IITB-Monash Research Academy, IIT Bombay)

  • Kartikey Thakar

    (IIT Bombay)

  • Sushovan Dhara

    (IIT Bombay)

  • Saurabh Lodha

    (IIT Bombay)

Abstract

Layered transition metal dichalcogenides have shown tremendous potential for photodetection due to their non-zero direct bandgaps, high light absorption coefficients and carrier mobilities, and ability to form atomically sharp and defect-free heterointerfaces. A critical and fundamental bottleneck in the realization of high performance detectors is their trap-dependent photoresponse that trades off responsivity with speed. This work demonstrates a facile method of attenuating this trade-off by nearly 2x through integration of a lateral, in-plane, electrostatically tunable p-n homojunction with a conventional WSe2 phototransistor. The tunable p-n junction allows modulation of the photocarrier population and width of the conducting channel independently from the phototransistor. Increased illumination current with the lateral p-n junction helps achieve responsivity enhancement upto 2.4x at nearly the same switching speed (14–16 µs) over a wide range of laser power (300 pW–33 nW). The added benefit of reduced dark current enhances specific detectivity (D*) by nearly 25x to yield a maximum measured flicker noise-limited D* of 1.1×1012 Jones. High responsivity of 170 A/W at 300 pW laser power along with the ability to detect sub-1 pW laser switching are demonstrated.

Suggested Citation

  • Sayantan Ghosh & Abin Varghese & Kartikey Thakar & Sushovan Dhara & Saurabh Lodha, 2021. "Enhanced responsivity and detectivity of fast WSe2 phototransistor using electrostatically tunable in-plane lateral p-n homojunction," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23679-8
    DOI: 10.1038/s41467-021-23679-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23679-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23679-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingxiu Liu & Jingxuan Wei & Liujian Qi & Junru An & Xingsi Liu & Yahui Li & Zhiming Shi & Dabing Li & Kostya S. Novoselov & Cheng-Wei Qiu & Shaojuan Li, 2024. "Photogating-assisted tunneling boosts the responsivity and speed of heterogeneous WSe2/Ta2NiSe5 photodetectors," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23679-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.