IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23618-7.html
   My bibliography  Save this article

Exposing the hidden influence of selection rules on phonon–phonon scattering by pressure and temperature tuning

Author

Listed:
  • Navaneetha K. Ravichandran

    (Indian Institute of Science)

  • David Broido

    (Department of Physics, Boston College)

Abstract

Selection rules act to restrict the intrinsic anharmonic interactions between phonons in all crystals. Yet their influence on phonon propagation is hidden in most materials and so, hard to interrogate experimentally. Using ab initio calculations, we show that the otherwise invisible impact of selection rules on three-phonon scattering can be exposed through anomalous signatures in the pressure (P) and temperature (T) dependence of the thermal conductivities, κ, of certain compounds. Boron phosphide reveals such underlying behavior through an exceptionally sharp initial rise in κ with increasing P, which may be the steepest of any material, and also a peak and decrease in κ at high P. These features are in stark contrast to the measured behavior for many solids, and they occur at experimentally accessible conditions. These findings give a deep understanding of phonon lifetimes and heat conduction in solids, and motivate experimental efforts to observe the predicted behavior.

Suggested Citation

  • Navaneetha K. Ravichandran & David Broido, 2021. "Exposing the hidden influence of selection rules on phonon–phonon scattering by pressure and temperature tuning," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23618-7
    DOI: 10.1038/s41467-021-23618-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23618-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23618-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23618-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.