IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23616-9.html
   My bibliography  Save this article

Multication perovskite 2D/3D interfaces form via progressive dimensional reduction

Author

Listed:
  • Andrew H. Proppe

    (University of Toronto
    University of Toronto)

  • Andrew Johnston

    (University of Toronto)

  • Sam Teale

    (University of Toronto)

  • Arup Mahata

    (D3-Computation, Istituto Italiano di Tecnologia
    Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche (CNR-SCITEC), Istituto CNR di Scienze e Tecnologie Molecolari (ISTM-CNR))

  • Rafael Quintero-Bermudez

    (University of Toronto)

  • Eui Hyuk Jung

    (University of Toronto)

  • Luke Grater

    (University of Toronto)

  • Teng Cui

    (Department of Mechanical and Industrial Engineering)

  • Tobin Filleter

    (Department of Mechanical and Industrial Engineering)

  • Chang-Yong Kim

    (Canadian Light Source)

  • Shana O. Kelley

    (University of Toronto
    University of Toronto)

  • Filippo Angelis

    (D3-Computation, Istituto Italiano di Tecnologia
    Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche (CNR-SCITEC), Istituto CNR di Scienze e Tecnologie Molecolari (ISTM-CNR)
    University of Perugia
    College of Science, King Saud University)

  • Edward H. Sargent

    (University of Toronto)

Abstract

Many of the best-performing perovskite photovoltaic devices make use of 2D/3D interfaces, which improve efficiency and stability – but it remains unclear how the conversion of 3D-to-2D perovskite occurs and how these interfaces are assembled. Here, we use in situ Grazing-Incidence Wide-Angle X-Ray Scattering to resolve 2D/3D interface formation during spin-coating. We observe progressive dimensional reduction from 3D to n = 3 → 2 → 1 when we expose (MAPbBr3)0.05(FAPbI3)0.95 perovskites to vinylbenzylammonium ligand cations. Density functional theory simulations suggest ligands incorporate sequentially into the 3D lattice, driven by phenyl ring stacking, progressively bisecting the 3D perovskite into lower-dimensional fragments to form stable interfaces. Slowing the 2D/3D transformation with higher concentrations of antisolvent yields thinner 2D layers formed conformally onto 3D grains, improving carrier extraction and device efficiency (20% 3D-only, 22% 2D/3D). Controlling this progressive dimensional reduction has potential to further improve the performance of 2D/3D perovskite photovoltaics.

Suggested Citation

  • Andrew H. Proppe & Andrew Johnston & Sam Teale & Arup Mahata & Rafael Quintero-Bermudez & Eui Hyuk Jung & Luke Grater & Teng Cui & Tobin Filleter & Chang-Yong Kim & Shana O. Kelley & Filippo Angelis &, 2021. "Multication perovskite 2D/3D interfaces form via progressive dimensional reduction," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23616-9
    DOI: 10.1038/s41467-021-23616-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23616-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23616-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Li & Qi Liu & Jianqiu Gong & Shuai Li & Chunlei Zhang & Danpeng Gao & Zhongwei Chen & Zhen Li & Xin Wu & Dan Zhao & Zexin Yu & Xintong Li & Yan Wang & Haipeng Lu & Xiao Cheng Zeng & Zonglong Zhu, 2024. "Harnessing strong aromatic conjugation in low-dimensional perovskite heterojunctions for high-performance photovoltaic devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Xiaopeng Feng & Yuhong He & Wei Qu & Jinmei Song & Wanting Pan & Mingrui Tan & Bai Yang & Haotong Wei, 2022. "Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Hyungsoo Lee & Chan Uk Lee & Juwon Yun & Chang-Seop Jeong & Wooyong Jeong & Jaehyun Son & Young Sun Park & Subin Moon & Soobin Lee & Jun Hwan Kim & Jooho Moon, 2024. "A dual spin-controlled chiral two-/three-dimensional perovskite artificial leaf for efficient overall photoelectrochemical water splitting," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23616-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.