IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23583-1.html
   My bibliography  Save this article

Impairment of a distinct cancer-associated fibroblast population limits tumour growth and metastasis

Author

Listed:
  • Ute Jungwirth

    (The Institute of Cancer Research
    University of Bath)

  • Antoinette Weverwijk

    (The Institute of Cancer Research
    The Netherlands Cancer Institute)

  • Rachel J. Evans

    (The Institute of Cancer Research)

  • Liam Jenkins

    (The Institute of Cancer Research)

  • David Vicente

    (The Institute of Cancer Research)

  • John Alexander

    (The Institute of Cancer Research)

  • Qiong Gao

    (The Institute of Cancer Research
    The Institute of Cancer Research)

  • Syed Haider

    (The Institute of Cancer Research)

  • Marjan Iravani

    (The Institute of Cancer Research)

  • Clare M. Isacke

    (The Institute of Cancer Research)

Abstract

Profiling studies have revealed considerable phenotypic heterogeneity in cancer-associated fibroblasts (CAFs) present within the tumour microenvironment, however, functional characterisation of different CAF subsets is hampered by the lack of specific markers defining these populations. Here we show that genetic deletion of the Endo180 (MRC2) receptor, predominantly expressed by a population of matrix-remodelling CAFs, profoundly limits tumour growth and metastasis; effects that can be recapitulated in 3D co-culture assays. This impairment results from a CAF-intrinsic contractility defect and reduced CAF viability, which coupled with the lack of phenotype in the normal mouse, demonstrates that upregulated Endo180 expression by a specific, potentially targetable CAF subset is required to generate a supportive tumour microenvironment. Further, characterisation of a tumour subline selected via serial in vivo passage for its ability to overcome these stromal defects provides important insight into, how tumour cells adapt to a non-activated stroma in the early stages of metastatic colonisation.

Suggested Citation

  • Ute Jungwirth & Antoinette Weverwijk & Rachel J. Evans & Liam Jenkins & David Vicente & John Alexander & Qiong Gao & Syed Haider & Marjan Iravani & Clare M. Isacke, 2021. "Impairment of a distinct cancer-associated fibroblast population limits tumour growth and metastasis," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23583-1
    DOI: 10.1038/s41467-021-23583-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23583-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23583-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hugo Croizer & Rana Mhaidly & Yann Kieffer & Geraldine Gentric & Lounes Djerroudi & Renaud Leclere & Floriane Pelon & Catherine Robley & Mylene Bohec & Arnaud Meng & Didier Meseure & Emanuela Romano &, 2024. "Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-28, December.
    2. Julia M. Houthuijzen & Roebi Bruijn & Eline Burg & Anne Paulien Drenth & Ellen Wientjens & Tamara Filipovic & Esme Bullock & Chiara S. Brambillasca & Emilia M. Pulver & Marja Nieuwland & Iris Rink & F, 2023. "CD26-negative and CD26-positive tissue-resident fibroblasts contribute to functionally distinct CAF subpopulations in breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Marina T. Broz & Emily Y. Ko & Kristin Ishaya & Jinfen Xiao & Marco Simone & Xen Ping Hoi & Roberta Piras & Basia Gala & Fernando H. G. Tessaro & Anja Karlstaedt & Sandra Orsulic & Amanda W. Lund & Ke, 2024. "Metabolic targeting of cancer associated fibroblasts overcomes T-cell exclusion and chemoresistance in soft-tissue sarcomas," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23583-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.