IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23536-8.html
   My bibliography  Save this article

Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6

Author

Listed:
  • Man Li

    (Renmin University of China)

  • Qi Wang

    (Renmin University of China)

  • Guangwei Wang

    (Beijing Normal University)

  • Zhihong Yuan

    (Beijing Normal University)

  • Wenhua Song

    (Renmin University of China)

  • Rui Lou

    (Lanzhou University
    Fudan University
    Collaborative Innovation Center of Advanced Microstructures)

  • Zhengtai Liu

    (Chinese Academy of Sciences)

  • Yaobo Huang

    (Chinese Academy of Sciences)

  • Zhonghao Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Hechang Lei

    (Renmin University of China)

  • Zhiping Yin

    (Beijing Normal University)

  • Shancai Wang

    (Renmin University of China)

Abstract

Kagome-lattices of 3d-transition metals hosting Weyl/Dirac fermions and topological flat bands exhibit non-trivial topological characters and novel quantum phases, such as the anomalous Hall effect and fractional quantum Hall effect. With consideration of spin–orbit coupling and electron correlation, several instabilities could be induced. The typical characters of the electronic structure of a kagome lattice, i.e., the saddle point, Dirac-cone, and flat band, around the Fermi energy (EF) remain elusive in magnetic kagome materials. We present the experimental observation of the complete features in ferromagnetic kagome layers of YMn6Sn6 helically coupled along the c-axis, by using angle-resolved photoemission spectroscopy and band structure calculations. We demonstrate a Dirac dispersion near EF, which is predicted by spin-polarized theoretical calculations, carries an intrinsic Berry curvature and contributes to the anomalous Hall effect in transport measurements. In addition, a flat band and a saddle point with a high density of states near EF are observed. These multi-sets of kagome features are of orbital-selective origin and could cause multi-orbital magnetism. The Dirac fermion, flat band and saddle point in the vicinity of EF open an opportunity in manipulating the topological properties in magnetic materials.

Suggested Citation

  • Man Li & Qi Wang & Guangwei Wang & Zhihong Yuan & Wenhua Song & Rui Lou & Zhengtai Liu & Yaobo Huang & Zhonghao Liu & Hechang Lei & Zhiping Yin & Shancai Wang, 2021. "Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23536-8
    DOI: 10.1038/s41467-021-23536-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23536-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23536-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Subhasis Samanta & Hwiwoo Park & Chanhyeon Lee & Sungmin Jeon & Hengbo Cui & Yong-Xin Yao & Jungseek Hwang & Kwang-Yong Choi & Heung-Sik Kim, 2024. "Emergence of flat bands and ferromagnetic fluctuations via orbital-selective electron correlations in Mn-based kagome metal," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Lebing Chen & Xiaokun Teng & Hengxin Tan & Barry L. Winn & Garrett E. Granroth & Feng Ye & D. H. Yu & R. A. Mole & Bin Gao & Binghai Yan & Ming Yi & Pengcheng Dai, 2024. "Competing itinerant and local spin interactions in kagome metal FeGe," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23536-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.