IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23517-x.html
   My bibliography  Save this article

Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation

Author

Listed:
  • Shubo Tian

    (Beijing University of Chemical Technology
    Tsinghua University)

  • Bingxue Wang

    (Shandong University)

  • Wanbing Gong

    (Institute of Solid State Physics, Chinese Academy of Sciences)

  • Zizhan He

    (Shandong University)

  • Qi Xu

    (Tsinghua University)

  • Wenxing Chen

    (School of Materials Science and Engineering, Beijing Institute of Technology)

  • Qinghua Zhang

    (Chinese Academy of Sciences)

  • Youqi Zhu

    (School of Materials Science and Engineering, Beijing Institute of Technology)

  • Jiarui Yang

    (Tsinghua University)

  • Qiang Fu

    (Shandong University)

  • Chun Chen

    (Institute of Solid State Physics, Chinese Academy of Sciences)

  • Yuxiang Bu

    (Shandong University)

  • Lin Gu

    (Chinese Academy of Sciences)

  • Xiaoming Sun

    (Beijing University of Chemical Technology)

  • Huijun Zhao

    (Institute of Solid State Physics, Chinese Academy of Sciences)

  • Dingsheng Wang

    (Tsinghua University)

  • Yadong Li

    (Tsinghua University)

Abstract

Atomically monodispersed heterogeneous catalysts with uniform active sites and high atom utilization efficiency are ideal heterogeneous catalytic materials. Designing such type of catalysts, however, remains a formidable challenge. Herein, using a wet-chemical method, we successfully achieved a mesoporous graphitic carbon nitride (mpg-C3N4) supported dual-atom Pt2 catalyst, which exhibited excellent catalytic performance for the highly selective hydrogenation of nitrobenzene to aniline. The conversion of ˃99% is significantly superior to the corresponding values of mpg-C3N4-supported single Pt atoms and ultra-small Pt nanoparticles (~2 nm). First-principles calculations revealed that the excellent and unique catalytic performance of the Pt2 species originates from the facile H2 dissociation induced by the diatomic characteristics of Pt and the easy desorption of the aniline product. The produced Pt2/mpg-C3N4 samples are versatile and can be applied in catalyzing other important reactions, such as the selective hydrogenation of benzaldehyde and the epoxidation of styrene.

Suggested Citation

  • Shubo Tian & Bingxue Wang & Wanbing Gong & Zizhan He & Qi Xu & Wenxing Chen & Qinghua Zhang & Youqi Zhu & Jiarui Yang & Qiang Fu & Chun Chen & Yuxiang Bu & Lin Gu & Xiaoming Sun & Huijun Zhao & Dingsh, 2021. "Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23517-x
    DOI: 10.1038/s41467-021-23517-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23517-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23517-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Liu & Haisong Feng & Yusen Yang & Yiming Niu & Lei Wang & Pan Yin & Song Hong & Bingsen Zhang & Xin Zhang & Min Wei, 2022. "Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Qin Yang & Jinyan Cai & Guanwu Li & Runhua Gao & Zhiyuan Han & Jingjing Han & Dong Liu & Lixian Song & Zixiong Shi & Dong Wang & Gongming Wang & Weitao Zheng & Guangmin Zhou & Yingze Song, 2024. "Chlorine bridge bond-enabled binuclear copper complex for electrocatalyzing lithium–sulfur reactions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Hongqiang Jin & Kaixin Zhou & Ruoxi Zhang & Hongjie Cui & Yu Yu & Peixin Cui & Weiguo Song & Changyan Cao, 2023. "Regulating the electronic structure through charge redistribution in dense single-atom catalysts for enhanced alkene epoxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23517-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.