IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23184-y.html
   My bibliography  Save this article

Self-clocking fast and variation tolerant true random number generator based on a stochastic mott memristor

Author

Listed:
  • Gwangmin Kim

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Jae Hyun In

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Young Seok Kim

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Hakseung Rhee

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Woojoon Park

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Hanchan Song

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Juseong Park

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Kyung Min Kim

    (Korea Advanced Institute of Science and Technology (KAIST))

Abstract

The intrinsic stochasticity of the memristor can be used to generate true random numbers, essential for non-decryptable hardware-based security devices. Here, we propose a novel and advanced method to generate true random numbers utilizing the stochastic oscillation behavior of a NbOx mott memristor, exhibiting self-clocking, fast and variation tolerant characteristics. The random number generation rate of the device can be at least 40 kb s−1, which is the fastest record compared with previous volatile memristor-based TRNG devices. Also, its dimensionless operating principle provides high tolerance against both ambient temperature variation and device-to-device variation, enabling robust security hardware applicable in harsh environments.

Suggested Citation

  • Gwangmin Kim & Jae Hyun In & Young Seok Kim & Hakseung Rhee & Woojoon Park & Hanchan Song & Juseong Park & Kyung Min Kim, 2021. "Self-clocking fast and variation tolerant true random number generator based on a stochastic mott memristor," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23184-y
    DOI: 10.1038/s41467-021-23184-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23184-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23184-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hakseung Rhee & Gwangmin Kim & Hanchan Song & Woojoon Park & Do Hoon Kim & Jae Hyun In & Younghyun Lee & Kyung Min Kim, 2023. "Probabilistic computing with NbOx metal-insulator transition-based self-oscillatory pbit," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Kyung Seok Woo & Janguk Han & Su-in Yi & Luke Thomas & Hyungjun Park & Suhas Kumar & Cheol Seong Hwang, 2024. "Tunable stochastic memristors for energy-efficient encryption and computing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Kyung Seok Woo & Alan Zhang & Allison Arabelo & Timothy D. Brown & Minseong Park & A. Alec Talin & Elliot J. Fuller & Ravindra Singh Bisht & Xiaofeng Qian & Raymundo Arroyave & Shriram Ramanathan & Lu, 2024. "True random number generation using the spin crossover in LaCoO3," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23184-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.