IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23181-1.html
   My bibliography  Save this article

Electrically connected spin-torque oscillators array for 2.4 GHz WiFi band transmission and energy harvesting

Author

Listed:
  • Raghav Sharma

    (National University of Singapore)

  • Rahul Mishra

    (National University of Singapore
    Indian Institute of Technology Delhi)

  • Tung Ngo

    (National University of Singapore)

  • Yong-Xin Guo

    (National University of Singapore)

  • Shunsuke Fukami

    (Tohoku University
    Tohoku University
    Tohoku University
    Tohoku University)

  • Hideo Sato

    (Tohoku University
    Tohoku University
    Tohoku University
    Tohoku University)

  • Hideo Ohno

    (Tohoku University
    Tohoku University
    Tohoku University
    Tohoku University)

  • Hyunsoo Yang

    (National University of Singapore)

Abstract

The mutual synchronization of spin-torque oscillators (STOs) is critical for communication, energy harvesting and neuromorphic applications. Short range magnetic coupling-based synchronization has spatial restrictions (few µm), whereas the long-range electrical synchronization using vortex STOs has limited frequency responses in hundreds MHz (

Suggested Citation

  • Raghav Sharma & Rahul Mishra & Tung Ngo & Yong-Xin Guo & Shunsuke Fukami & Hideo Sato & Hideo Ohno & Hyunsoo Yang, 2021. "Electrically connected spin-torque oscillators array for 2.4 GHz WiFi band transmission and energy harvesting," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23181-1
    DOI: 10.1038/s41467-021-23181-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23181-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23181-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vidal, João V. & Rolo, Pedro & Carneiro, Pedro M.R. & Peres, Inês & Kholkin, Andrei L. & Soares dos Santos, Marco P., 2022. "Automated electromagnetic generator with self-adaptive structure by coil switching," Applied Energy, Elsevier, vol. 325(C).
    2. S. Jiang & S. Chung & M. Ahlberg & A. Frisk & R. Khymyn & Q. Tuan Le & H. Mazraati & A. Houshang & O. Heinonen & J. Åkerman, 2024. "Magnetic droplet soliton pairs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23181-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.