IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23063-6.html
   My bibliography  Save this article

CryoEM structure of the antibacterial target PBP1b at 3.3 Å resolution

Author

Listed:
  • Nathanael A. Caveney

    (University of British Columbia
    University of British Columbia)

  • Sean D. Workman

    (University of British Columbia
    University of British Columbia)

  • Rui Yan

    (Howard Hughes Medical Institute)

  • Claire E. Atkinson

    (University of British Columbia
    University of British Columbia
    University of British Columbia)

  • Zhiheng Yu

    (Howard Hughes Medical Institute)

  • Natalie C. J. Strynadka

    (University of British Columbia
    University of British Columbia
    University of British Columbia)

Abstract

The pathway for the biosynthesis of the bacterial cell wall is one of the most prolific antibiotic targets, exemplified by the widespread use of β-lactam antibiotics. Despite this, our structural understanding of class A penicillin binding proteins, which perform the last two steps in this pathway, is incomplete due to the inherent difficulty in their crystallization and the complexity of their substrates. Here, we determine the near atomic resolution structure of the 83 kDa class A PBP from Escherichia coli, PBP1b, using cryogenic electron microscopy and a styrene maleic acid anhydride membrane mimetic. PBP1b, in its apo form, is seen to exhibit a distinct conformation in comparison to Moenomycin-bound crystal structures. The work herein paves the way for the use of cryoEM in structure-guided antibiotic development for this notoriously difficult to crystalize class of proteins and their complex substrates.

Suggested Citation

  • Nathanael A. Caveney & Sean D. Workman & Rui Yan & Claire E. Atkinson & Zhiheng Yu & Natalie C. J. Strynadka, 2021. "CryoEM structure of the antibacterial target PBP1b at 3.3 Å resolution," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23063-6
    DOI: 10.1038/s41467-021-23063-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23063-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23063-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irina Shlosman & Elayne M. Fivenson & Morgan S. A. Gilman & Tyler A. Sisley & Suzanne Walker & Thomas G. Bernhardt & Andrew C. Kruse & Joseph J. Loparo, 2023. "Allosteric activation of cell wall synthesis during bacterial growth," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23063-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.