IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23001-6.html
   My bibliography  Save this article

On-chip spectrometers using stratified waveguide filters

Author

Listed:
  • Ang Li

    (University of California at San Diego)

  • Yeshaiahu Fainman

    (University of California at San Diego)

Abstract

We present an ultra-compact single-shot spectrometer on silicon platform for sparse spectrum reconstruction. It consists of 32 stratified waveguide filters (SWFs) with diverse transmission spectra for sampling the unknown spectrum of the input signal and a specially designed ultra-compact structure for splitting the incident signal into those 32 filters with low power imbalance. Each SWF has a footprint less than 1 µm × 30 µm, while the 1 × 32 splitter and 32 filters in total occupy an area of about 35 µm × 260 µm, which to the best of our knowledge, is the smallest footprint spectrometer realized on silicon photonic platform. Experimental characteristics of the fabricated spectrometer demonstrate a broad operating bandwidth of 180 nm centered at 1550 nm and narrowband peaks with 0.45 nm Full-Width-Half-Maximum (FWHM) can be clearly resolved. This concept can also be implemented using other material platforms for operation in optical spectral bands of interest for various applications.

Suggested Citation

  • Ang Li & Yeshaiahu Fainman, 2021. "On-chip spectrometers using stratified waveguide filters," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23001-6
    DOI: 10.1038/s41467-021-23001-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23001-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23001-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23001-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.