IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23000-7.html
   My bibliography  Save this article

Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams

Author

Listed:
  • T. Kurz

    (Helmholtz-Zentrum Dresden–Rossendorf
    Technische Universität Dresden)

  • T. Heinemann

    (Deutsches Elektronen-Synchrotron DESY
    The Cockcroft Institute
    University of Strathclyde)

  • M. F. Gilljohann

    (Ludwig–Maximilians–Universität München
    Max Planck Institut für Quantenoptik)

  • Y. Y. Chang

    (Helmholtz-Zentrum Dresden–Rossendorf)

  • J. P. Couperus Cabadağ

    (Helmholtz-Zentrum Dresden–Rossendorf)

  • A. Debus

    (Helmholtz-Zentrum Dresden–Rossendorf)

  • O. Kononenko

    (LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris)

  • R. Pausch

    (Helmholtz-Zentrum Dresden–Rossendorf)

  • S. Schöbel

    (Helmholtz-Zentrum Dresden–Rossendorf
    Technische Universität Dresden)

  • R. W. Assmann

    (Deutsches Elektronen-Synchrotron DESY)

  • M. Bussmann

    (Helmholtz-Zentrum Dresden–Rossendorf
    Center for Advanced Systems Understanding CASUS)

  • H. Ding

    (Ludwig–Maximilians–Universität München
    Max Planck Institut für Quantenoptik)

  • J. Götzfried

    (Ludwig–Maximilians–Universität München
    Max Planck Institut für Quantenoptik)

  • A. Köhler

    (Helmholtz-Zentrum Dresden–Rossendorf)

  • G. Raj

    (LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris)

  • S. Schindler

    (Ludwig–Maximilians–Universität München
    Max Planck Institut für Quantenoptik)

  • K. Steiniger

    (Helmholtz-Zentrum Dresden–Rossendorf)

  • O. Zarini

    (Helmholtz-Zentrum Dresden–Rossendorf)

  • S. Corde

    (LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris)

  • A. Döpp

    (Ludwig–Maximilians–Universität München
    Max Planck Institut für Quantenoptik)

  • B. Hidding

    (The Cockcroft Institute
    University of Strathclyde)

  • S. Karsch

    (Ludwig–Maximilians–Universität München
    Max Planck Institut für Quantenoptik)

  • U. Schramm

    (Helmholtz-Zentrum Dresden–Rossendorf
    Technische Universität Dresden)

  • A. Martinez de la Ossa

    (Deutsches Elektronen-Synchrotron DESY)

  • A. Irman

    (Helmholtz-Zentrum Dresden–Rossendorf)

Abstract

Plasma wakefield accelerators are capable of sustaining gigavolt-per-centimeter accelerating fields, surpassing the electric breakdown threshold in state-of-the-art accelerator modules by 3-4 orders of magnitude. Beam-driven wakefields offer particularly attractive conditions for the generation and acceleration of high-quality beams. However, this scheme relies on kilometer-scale accelerators. Here, we report on the demonstration of a millimeter-scale plasma accelerator powered by laser-accelerated electron beams. We showcase the acceleration of electron beams to 128 MeV, consistent with simulations exhibiting accelerating gradients exceeding 100 GV m−1. This miniaturized accelerator is further explored by employing a controlled pair of drive and witness electron bunches, where a fraction of the driver energy is transferred to the accelerated witness through the plasma. Such a hybrid approach allows fundamental studies of beam-driven plasma accelerator concepts at widely accessible high-power laser facilities. It is anticipated to provide compact sources of energetic high-brightness electron beams for quality-demanding applications such as free-electron lasers.

Suggested Citation

  • T. Kurz & T. Heinemann & M. F. Gilljohann & Y. Y. Chang & J. P. Couperus Cabadağ & A. Debus & O. Kononenko & R. Pausch & S. Schöbel & R. W. Assmann & M. Bussmann & H. Ding & J. Götzfried & A. Köhler &, 2021. "Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23000-7
    DOI: 10.1038/s41467-021-23000-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23000-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23000-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. F. Habib & G. G. Manahan & P. Scherkl & T. Heinemann & A. Sutherland & R. Altuiri & B. M. Alotaibi & M. Litos & J. Cary & T. Raubenheimer & E. Hemsing & M. J. Hogan & J. B. Rosenzweig & P. H. Willi, 2023. "Attosecond-Angstrom free-electron-laser towards the cold beam limit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23000-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.