Author
Listed:
- Zhi-Ling Yang
(Max Planck Institute for Chemical Ecology)
- Hussam Hassan Nour-Eldin
(University of Copenhagen)
- Sabine Hänniger
(Max Planck Institute for Chemical Ecology)
- Michael Reichelt
(Max Planck Institute for Chemical Ecology)
- Christoph Crocoll
(University of Copenhagen)
- Fabian Seitz
(Max Planck Institute for Chemical Ecology)
- Heiko Vogel
(Max Planck Institute for Chemical Ecology)
- Franziska Beran
(Max Planck Institute for Chemical Ecology)
Abstract
Many herbivorous insects selectively accumulate plant toxins for defense against predators; however, little is known about the transport processes that enable insects to absorb and store defense compounds in the body. Here, we investigate how a specialist herbivore, the horseradish flea beetle, accumulates glucosinolate defense compounds from Brassicaceae in the hemolymph. Using phylogenetic analyses of coleopteran major facilitator superfamily transporters, we identify a clade of glucosinolate-specific transporters (PaGTRs) belonging to the sugar porter family. PaGTRs are predominantly expressed in the excretory system, the Malpighian tubules. Silencing of PaGTRs leads to elevated glucosinolate excretion, significantly reducing the levels of sequestered glucosinolates in beetles. This suggests that PaGTRs reabsorb glucosinolates from the Malpighian tubule lumen to prevent their loss by excretion. Ramsay assays corroborated the selective retention of glucosinolates by Malpighian tubules of P. armoraciae in situ. Thus, the selective accumulation of plant defense compounds in herbivorous insects can depend on the ability to prevent excretion.
Suggested Citation
Zhi-Ling Yang & Hussam Hassan Nour-Eldin & Sabine Hänniger & Michael Reichelt & Christoph Crocoll & Fabian Seitz & Heiko Vogel & Franziska Beran, 2021.
"Sugar transporters enable a leaf beetle to accumulate plant defense compounds,"
Nature Communications, Nature, vol. 12(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22982-8
DOI: 10.1038/s41467-021-22982-8
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22982-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.