Author
Listed:
- Xiao Ren
(Chinese Academy of Science
Nanyang Technological University)
- Tianze Wu
(Chinese Academy of Science
Nanyang Technological University
1 CREATE way)
- Yuanmiao Sun
(Nanyang Technological University)
- Yan Li
(Chinese Academy of Science)
- Guoyu Xian
(Chinese Academy of Science)
- Xianhu Liu
(Key Laboratory of Advanced Material Processing & Mold (Zhengzhou University), Ministry of Education)
- Chengmin Shen
(Chinese Academy of Science)
- Jose Gracia
(MagnetoCat SL)
- Hong-Jun Gao
(Chinese Academy of Science)
- Haitao Yang
(Chinese Academy of Science)
- Zhichuan J. Xu
(Nanyang Technological University
1 CREATE way
Energy Research Institute @ Nanyang Technological University)
Abstract
The oxygen evolution reaction (OER) is the bottleneck that limits the energy efficiency of water-splitting. The process involves four electrons’ transfer and the generation of triplet state O2 from singlet state species (OH- or H2O). Recently, explicit spin selection was described as a possible way to promote OER in alkaline conditions, but the specific spin-polarized kinetics remains unclear. Here, we report that by using ferromagnetic ordered catalysts as the spin polarizer for spin selection under a constant magnetic field, the OER can be enhanced. However, it does not applicable to non-ferromagnetic catalysts. We found that the spin polarization occurs at the first electron transfer step in OER, where coherent spin exchange happens between the ferromagnetic catalyst and the adsorbed oxygen species with fast kinetics, under the principle of spin angular momentum conservation. In the next three electron transfer steps, as the adsorbed O species adopt fixed spin direction, the OER electrons need to follow the Hund rule and Pauling exclusion principle, thus to carry out spin polarization spontaneously and finally lead to the generation of triplet state O2. Here, we showcase spin-polarized kinetics of oxygen evolution reaction, which gives references in the understanding and design of spin-dependent catalysts.
Suggested Citation
Xiao Ren & Tianze Wu & Yuanmiao Sun & Yan Li & Guoyu Xian & Xianhu Liu & Chengmin Shen & Jose Gracia & Hong-Jun Gao & Haitao Yang & Zhichuan J. Xu, 2021.
"Spin-polarized oxygen evolution reaction under magnetic field,"
Nature Communications, Nature, vol. 12(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22865-y
DOI: 10.1038/s41467-021-22865-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22865-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.