IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22730-y.html
   My bibliography  Save this article

A hypothalamic-thalamostriatal circuit that controls approach-avoidance conflict in rats

Author

Listed:
  • D. S. Engelke

    (The University of Texas Health Science Center)

  • X. O. Zhang

    (The University of Texas Health Science Center)

  • J. J. O’Malley

    (The University of Texas Health Science Center)

  • J. A. Fernandez-Leon

    (The University of Texas Health Science Center)

  • S. Li

    (University of Manitoba)

  • G. J. Kirouac

    (University of Manitoba)

  • M. Beierlein

    (The University of Texas Health Science Center)

  • F. H. Do-Monte

    (The University of Texas Health Science Center)

Abstract

Survival depends on a balance between seeking rewards and avoiding potential threats, but the neural circuits that regulate this motivational conflict remain largely unknown. Using an approach-food vs. avoid-predator threat conflict test in rats, we identified a subpopulation of neurons in the anterior portion of the paraventricular thalamic nucleus (aPVT) which express corticotrophin-releasing factor (CRF) and are preferentially recruited during conflict. Inactivation of aPVTCRF neurons during conflict biases animal’s response toward food, whereas activation of these cells recapitulates the food-seeking suppression observed during conflict. aPVTCRF neurons project densely to the nucleus accumbens (NAc), and activity in this pathway reduces food seeking and increases avoidance. In addition, we identified the ventromedial hypothalamus (VMH) as a critical input to aPVTCRF neurons, and demonstrated that VMH-aPVT neurons mediate defensive behaviors exclusively during conflict. Together, our findings describe a hypothalamic-thalamostriatal circuit that suppresses reward-seeking behavior under the competing demands of avoiding threats.

Suggested Citation

  • D. S. Engelke & X. O. Zhang & J. J. O’Malley & J. A. Fernandez-Leon & S. Li & G. J. Kirouac & M. Beierlein & F. H. Do-Monte, 2021. "A hypothalamic-thalamostriatal circuit that controls approach-avoidance conflict in rats," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22730-y
    DOI: 10.1038/s41467-021-22730-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22730-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22730-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelsey M. Vollmer & Lisa M. Green & Roger I. Grant & Kion T. Winston & Elizabeth M. Doncheck & Christopher W. Bowen & Jacqueline E. Paniccia & Rachel E. Clarke & Annika Tiller & Preston N. Siegler & B, 2022. "An opioid-gated thalamoaccumbal circuit for the suppression of reward seeking in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Jun Ma & John J. O’Malley & Malaz Kreiker & Yan Leng & Isbah Khan & Morgan Kindel & Mario A. Penzo, 2024. "Convergent direct and indirect cortical streams shape avoidance decisions in mice via the midline thalamus," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Kuikui Zhou & Hua Xu & Shanshan Lu & Shaolei Jiang & Guoqiang Hou & Xiaofei Deng & Miao He & Yingjie Zhu, 2022. "Reward and aversion processing by input-defined parallel nucleus accumbens circuits in mice," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22730-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.