IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22697-w.html
   My bibliography  Save this article

Sub-second and ppm-level optical sensing of hydrogen using templated control of nano-hydride geometry and composition

Author

Listed:
  • Hoang Mai Luong

    (University of Georgia)

  • Minh Thien Pham

    (University of Georgia)

  • Tyler Guin

    (Savannah River National Laboratory)

  • Richa Pokharel Madhogaria

    (University of South Florida)

  • Manh-Huong Phan

    (University of South Florida)

  • George Keefe Larsen

    (Savannah River National Laboratory)

  • Tho Duc Nguyen

    (University of Georgia)

Abstract

The use of hydrogen as a clean and renewable alternative to fossil fuels requires a suite of flammability mitigating technologies, particularly robust sensors for hydrogen leak detection and concentration monitoring. To this end, we have developed a class of lightweight optical hydrogen sensors based on a metasurface of Pd nano-patchy particle arrays, which fulfills the increasing requirements of a safe hydrogen fuel sensing system with no risk of sparking. The structure of the optical sensor is readily nano-engineered to yield extraordinarily rapid response to hydrogen gas (

Suggested Citation

  • Hoang Mai Luong & Minh Thien Pham & Tyler Guin & Richa Pokharel Madhogaria & Manh-Huong Phan & George Keefe Larsen & Tho Duc Nguyen, 2021. "Sub-second and ppm-level optical sensing of hydrogen using templated control of nano-hydride geometry and composition," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22697-w
    DOI: 10.1038/s41467-021-22697-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22697-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22697-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhihao Ren & Zixuan Zhang & Jingxuan Wei & Bowei Dong & Chengkuo Lee, 2022. "Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. David Tomeček & Henrik Klein Moberg & Sara Nilsson & Athanasios Theodoridis & Iwan Darmadi & Daniel Midtvedt & Giovanni Volpe & Olof Andersson & Christoph Langhammer, 2024. "Neural network enabled nanoplasmonic hydrogen sensors with 100 ppm limit of detection in humid air," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Anita Šalić & Bruno Zelić, 2022. "A Game Changer: Microfluidic Technology for Enhancing Biohydrogen Production—Small Size for Great Performance," Energies, MDPI, vol. 15(19), pages 1-22, September.
    4. Ferry Anggoro Ardy Nugroho & Ping Bai & Iwan Darmadi & Gabriel W. Castellanos & Joachim Fritzsche & Christoph Langhammer & Jaime Gómez Rivas & Andrea Baldi, 2022. "Inverse designed plasmonic metasurface with parts per billion optical hydrogen detection," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22697-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.