IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22584-4.html
   My bibliography  Save this article

A committed fourfold increase in ocean oxygen loss

Author

Listed:
  • Andreas Oschlies

    (GEOMAR Helmholtz Centre for Ocean Research Kiel
    Kiel University)

Abstract

Less than a quarter of ocean deoxygenation that will ultimately be caused by historical CO2 emissions is already realized, according to millennial-scale model simulations that assume zero CO2 emissions from year 2021 onwards. About 80% of the committed oxygen loss occurs below 2000 m depth, where a more sluggish overturning circulation will increase water residence times and accumulation of respiratory oxygen demand. According to the model results, the deep ocean will thereby lose more than 10% of its pre-industrial oxygen content even if CO2 emissions and thus global warming were stopped today. In the surface layer, however, the ongoing deoxygenation will largely stop once CO2 emissions are stopped. Accounting for the joint effects of committed oxygen loss and ocean warming, metabolic viability representative for marine animals declines by up to 25% over large regions of the deep ocean, posing an unavoidable escalation of anthropogenic pressure on deep-ocean ecosystems.

Suggested Citation

  • Andreas Oschlies, 2021. "A committed fourfold increase in ocean oxygen loss," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22584-4
    DOI: 10.1038/s41467-021-22584-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22584-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22584-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vanessa I. Stenvers & Helena Hauss & Till Bayer & Charlotte Havermans & Ute Hentschel & Lara Schmittmann & Andrew K. Sweetman & Henk-Jan T. Hoving, 2023. "Experimental mining plumes and ocean warming trigger stress in a deep pelagic jellyfish," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Changyu Li & Jianping Huang & Xiaoyue Liu & Lei Ding & Yongli He & Yongkun Xie, 2024. "The ocean losing its breath under the heatwaves," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Kathrin Busch & Beate M. Slaby & Wolfgang Bach & Antje Boetius & Ina Clefsen & Ana Colaço & Marie Creemers & Javier Cristobo & Luisa Federwisch & Andre Franke & Asimenia Gavriilidou & Andrea Hethke & , 2022. "Biodiversity, environmental drivers, and sustainability of the global deep-sea sponge microbiome," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22584-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.