IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22526-0.html
   My bibliography  Save this article

FtsZ treadmilling is essential for Z-ring condensation and septal constriction initiation in Bacillus subtilis cell division

Author

Listed:
  • Kevin D. Whitley

    (Newcastle University
    Delft University of Technology)

  • Calum Jukes

    (Newcastle University)

  • Nicholas Tregidgo

    (Newcastle University)

  • Eleni Karinou

    (Newcastle University)

  • Pedro Almada

    (University College London)

  • Yann Cesbron

    (Newcastle University)

  • Ricardo Henriques

    (University College London
    Instituto Gulbenkian de Ciência)

  • Cees Dekker

    (Delft University of Technology)

  • Séamus Holden

    (Newcastle University)

Abstract

Despite the central role of division in bacterial physiology, how division proteins work together as a nanoscale machine to divide the cell remains poorly understood. Cell division by cell wall synthesis proteins is guided by the cytoskeleton protein FtsZ, which assembles at mid-cell as a dense Z-ring formed of treadmilling filaments. However, although FtsZ treadmilling is essential for cell division, the function of FtsZ treadmilling remains unclear. Here, we systematically resolve the function of FtsZ treadmilling across each stage of division in the Gram-positive model organism Bacillus subtilis using a combination of nanofabrication, advanced microscopy, and microfluidics to measure the division-protein dynamics in live cells with ultrahigh sensitivity. We find that FtsZ treadmilling has two essential functions: mediating condensation of diffuse FtsZ filaments into a dense Z-ring, and initiating constriction by guiding septal cell wall synthesis. After constriction initiation, FtsZ treadmilling has a dispensable function in accelerating septal constriction rate. Our results show that FtsZ treadmilling is critical for assembling and initiating the bacterial cell division machine.

Suggested Citation

  • Kevin D. Whitley & Calum Jukes & Nicholas Tregidgo & Eleni Karinou & Pedro Almada & Yann Cesbron & Ricardo Henriques & Cees Dekker & Séamus Holden, 2021. "FtsZ treadmilling is essential for Z-ring condensation and septal constriction initiation in Bacillus subtilis cell division," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22526-0
    DOI: 10.1038/s41467-021-22526-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22526-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22526-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junso Fujita & Hiroshi Amesaka & Takuya Yoshizawa & Kota Hibino & Natsuki Kamimura & Natsuko Kuroda & Takamoto Konishi & Yuki Kato & Mizuho Hara & Tsuyoshi Inoue & Keiichi Namba & Shun-ichi Tanaka & H, 2023. "Structures of a FtsZ single protofilament and a double-helical tube in complex with a monobody," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Han Gong & Di Yan & Yuanyuan Cui & Ying Li & Jize Yang & Wenjie Yang & Rui Zhan & Qianqian Wan & Xinci Wang & Haofeng He & Xiangdong Chen & Joe Lutkenhaus & Xinxing Yang & Shishen Du, 2024. "The divisome is a self-enhancing machine in Escherichia coli and Caulobacter crescentus," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22526-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.