IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22490-9.html
   My bibliography  Save this article

Suppression of pancreatic ductal adenocarcinoma growth and metastasis by fibrillar collagens produced selectively by tumor cells

Author

Listed:
  • Chenxi Tian

    (Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology)

  • Ying Huang

    (Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology)

  • Karl R. Clauser

    (Broad Institute of MIT and Harvard)

  • Steffen Rickelt

    (Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology)

  • Allison N. Lau

    (Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology)

  • Steven A. Carr

    (Broad Institute of MIT and Harvard)

  • Matthew G. Vander Heiden

    (Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
    Broad Institute of MIT and Harvard
    Dana-Farber Cancer Institute)

  • Richard O. Hynes

    (Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
    Howard Hughes Medical Institute)

Abstract

Pancreatic ductal adenocarcinoma (PDAC) has a collagen-rich dense extracellular matrix (ECM) that promotes malignancy of cancer cells and presents a barrier for drug delivery. Data analysis of our published mass spectrometry (MS)-based studies on enriched ECM from samples of progressive PDAC stages reveal that the C-terminal prodomains of fibrillar collagens are partially uncleaved in PDAC ECM, suggesting reduced procollagen C-proteinase activity. We further show that the enzyme responsible for procollagen C-proteinase activity, bone morphogenetic protein1 (BMP1), selectively suppresses tumor growth and metastasis in cells expressing high levels of COL1A1. Although BMP1, as a secreted proteinase, promotes fibrillar collagen deposition from both cancer cells and stromal cells, only cancer-cell-derived procollagen cleavage and deposition suppresses tumor malignancy. These studies reveal a role for cancer-cell-derived fibrillar collagen in selectively restraining tumor growth and suggest stratification of patients based on their tumor epithelial collagen I expression when considering treatments related to perturbation of fibrillar collagens.

Suggested Citation

  • Chenxi Tian & Ying Huang & Karl R. Clauser & Steffen Rickelt & Allison N. Lau & Steven A. Carr & Matthew G. Vander Heiden & Richard O. Hynes, 2021. "Suppression of pancreatic ductal adenocarcinoma growth and metastasis by fibrillar collagens produced selectively by tumor cells," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22490-9
    DOI: 10.1038/s41467-021-22490-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22490-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22490-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Papanicolaou & Amelia L. Parker & Michelle Yam & Elysse C. Filipe & Sunny Z. Wu & Jessica L. Chitty & Kaitlin Wyllie & Emmi Tran & Ellie Mok & Audrey Nadalini & Joanna N. Skhinas & Morghan C. , 2022. "Temporal profiling of the breast tumour microenvironment reveals collagen XII as a driver of metastasis," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    2. Sandrine Vadon-Le Goff & Agnès Tessier & Manon Napoli & Cindy Dieryckx & Julien Bauer & Mélissa Dussoyer & Priscillia Lagoutte & Célian Peyronnel & Lucie Essayan & Svenja Kleiser & Nicole Tueni & Emma, 2023. "Identification of PCPE-2 as the endogenous specific inhibitor of human BMP-1/tolloid-like proteinases," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22490-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.