IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22479-4.html
   My bibliography  Save this article

Therapeutic B-cell depletion reverses progression of Alzheimer’s disease

Author

Listed:
  • Ki Kim

    (National Institute on Aging)

  • Xin Wang

    (National Institute on Aging)

  • Emeline Ragonnaud

    (National Institute on Aging)

  • Monica Bodogai

    (National Institute on Aging)

  • Tomer Illouz

    (The Mina and Everard Goodman faculty of Life Sciences
    Bar Ilan University
    Bar Ilan University)

  • Marisa DeLuca

    (National Institute on Aging)

  • Ross A. McDevitt

    (National Institute on Aging)

  • Fedor Gusev

    (Institute of General Genetics, Russian Academy of Sciences)

  • Eitan Okun

    (The Mina and Everard Goodman faculty of Life Sciences
    Bar Ilan University
    Bar Ilan University)

  • Evgeny Rogaev

    (Institute of General Genetics, Russian Academy of Sciences
    Lomonosov Moscow State University
    University of Massachusetts Medical School
    Sirius University of Science and Technology)

  • Arya Biragyn

    (National Institute on Aging)

Abstract

The function of B cells in Alzheimer’s disease (AD) is not fully understood. While immunoglobulins that target amyloid beta (Aβ) may interfere with plaque formation and hence progression of the disease, B cells may contribute beyond merely producing immunoglobulins. Here we show that AD is associated with accumulation of activated B cells in circulation, and with infiltration of B cells into the brain parenchyma, resulting in immunoglobulin deposits around Aβ plaques. Using three different murine transgenic models, we provide counterintuitive evidence that the AD progression requires B cells. Despite expression of the AD-fostering transgenes, the loss of B cells alone is sufficient to reduce Aβ plaque burden and disease-associated microglia. It reverses behavioral and memory deficits and restores TGFβ+ microglia, respectively. Moreover, therapeutic depletion of B cells at the onset of the disease retards AD progression in mice, suggesting that targeting B cells may also benefit AD patients.

Suggested Citation

  • Ki Kim & Xin Wang & Emeline Ragonnaud & Monica Bodogai & Tomer Illouz & Marisa DeLuca & Ross A. McDevitt & Fedor Gusev & Eitan Okun & Evgeny Rogaev & Arya Biragyn, 2021. "Therapeutic B-cell depletion reverses progression of Alzheimer’s disease," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22479-4
    DOI: 10.1038/s41467-021-22479-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22479-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22479-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Zhang & Vesselina M. Pearsall & Chase M. Carver & Elizabeth J. Atkinson & Benjamin D. S. Clarkson & Ethan M. Grund & Michelle Baez-Faria & Kevin D. Pavelko & Jennifer M. Kachergus & Thomas A. White, 2022. "Rejuvenation of the aged brain immune cell landscape in mice through p16-positive senescent cell clearance," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Mary-Ellen Lynall & Blagoje Soskic & James Hayhurst & Jeremy Schwartzentruber & Daniel F. Levey & Gita A. Pathak & Renato Polimanti & Joel Gelernter & Murray B. Stein & Gosia Trynka & Menna R. Clatwor, 2022. "Genetic variants associated with psychiatric disorders are enriched at epigenetically active sites in lymphoid cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22479-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.