IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22420-9.html
   My bibliography  Save this article

Physiological role for GABAA receptor desensitization in the induction of long-term potentiation at inhibitory synapses

Author

Listed:
  • Martin Field

    (UCL
    University of Oxford)

  • Valentina Dorovykh

    (UCL)

  • Philip Thomas

    (UCL)

  • Trevor G. Smart

    (UCL)

Abstract

GABAA receptors (GABAARs) are pentameric ligand-gated ion channels distributed throughout the brain where they mediate synaptic and tonic inhibition. Following activation, these receptors undergo desensitization which involves entry into long-lived agonist-bound closed states. Although the kinetic effects of this state are recognised and its structural basis has been uncovered, the physiological impact of desensitization on inhibitory neurotransmission remains unknown. Here we describe an enduring form of long-term potentiation at inhibitory synapses that elevates synaptic current amplitude for 24 h following desensitization of GABAARs in response to agonist exposure or allosteric modulation. Using receptor mutants and allosteric modulators we demonstrate that desensitization of GABAARs facilitates their phosphorylation by PKC, which increases the number of receptors at inhibitory synapses. These observations provide a physiological relevance to the desensitized state of GABAARs, acting as a signal to regulate the efficacy of inhibitory synapses during prolonged periods of inhibitory neurotransmission.

Suggested Citation

  • Martin Field & Valentina Dorovykh & Philip Thomas & Trevor G. Smart, 2021. "Physiological role for GABAA receptor desensitization in the induction of long-term potentiation at inhibitory synapses," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22420-9
    DOI: 10.1038/s41467-021-22420-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22420-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22420-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22420-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.