IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22281-2.html
   My bibliography  Save this article

Single trial neuronal activity dynamics of attentional intensity in monkey visual area V4

Author

Listed:
  • Supriya Ghosh

    (The University of Chicago)

  • John H. R. Maunsell

    (The University of Chicago)

Abstract

Understanding how activity of visual neurons represents distinct components of attention and their dynamics that account for improved visual performance remains elusive because single-unit experiments have not isolated the intensive aspect of attention from attentional selectivity. We isolated attentional intensity and its single trial dynamics as determined by spatially non-selective attentional performance in an orientation discrimination task while recording from neurons in monkey visual area V4. We found that attentional intensity is a distinct cognitive signal that can be distinguished from spatial selectivity, reward expectations and motor actions. V4 spiking on single trials encodes a combination of sensory and cognitive signals on different time scales. Attentional intensity and the detection of behaviorally relevant sensory signals are well represented, but immediate reward expectation and behavioral choices are poorly represented in V4 spiking. These results provide a detailed representation of perceptual and cognitive signals in V4 that are crucial for attentional performance.

Suggested Citation

  • Supriya Ghosh & John H. R. Maunsell, 2021. "Single trial neuronal activity dynamics of attentional intensity in monkey visual area V4," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22281-2
    DOI: 10.1038/s41467-021-22281-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22281-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22281-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22281-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.